Skip to main content
Log in

Disturbance attenuation via double-domination approach for feedforward nonlinear system with unknown output function

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the problem of disturbance attenuation for a class of feedforward nonlinear systems whose output functions are not precisely known. A new control strategy based on a double-domination approach is proposed to cope with serious coexistence of various uncertainties, including unknown output function and external disturbances. The novelty lies in a distinct perspective to applying two domination gains in the constructions of the observer and the controller in the case when output functions are perturbed by unmeasurable errors, which was previously regarded as a rather difficult problem. A numerical simulation is carried out to illustrate the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khalil, H.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  2. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

  3. Marino, R., Tomei, P.: Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice Hall, London (1995)

    MATH  Google Scholar 

  4. Qian, C., Lin, W.: Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm. IEEE Trans. Autom. Control 47(10), 1710–1715 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Qian, C.: A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems. In: Proceedings of the IEEE American Control Conference, pp. 4708–4715 (2005)

  6. Zhang, J., Liu, Y., Mu, X.: Global adaptive stabilisation of high-order uncertain non-linear systems with double control input channels. IET Control Theory Appl. 9(5), 659–666 (2015)

    Article  MathSciNet  Google Scholar 

  7. Sun, Z., Liu, Z., Zhang, X.: New results on global stabilization for time-delay nonlinear systems with low-order and high-order growth conditions. Int. J. Robust Nonlinear Control 25(6), 878–899 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sun, Z., Li, T., Yang, S.: A unified time-varying feedback approach and its applications in adaptive stabilization of high-order uncertain nonlinear systems. Automatica 70, 249–257 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sun, Z., Yun, M., Li, T.: A new approach to fast global finite-time stabilization of high-order nonlinear system. Automatica 81, 455–463 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, L., Sui, S., Li, Y., Tong, S.: Adaptive fuzzy output feedback tracking control with prescribed performance for chemical reactor of MIMO nonlinear systems. Nonlinear Dyn. 80(1–2), 945–957 (2015)

    Article  MATH  Google Scholar 

  11. Sun, Z., Zhang, D., Meng, Q., Chen, C.: Feedback stabilization of time-delay nonlinear systems with continuous time-varying output function. Int. J. Syst. Sci. 50(2), 244–255 (2019)

    Article  Google Scholar 

  12. Jia, X., Xu, S., Lu, J., Li, Y., Chu, Y., Zhang, Z.: Adaptive control for uncertain nonlinear time-delay systems in a lower-triangular form. J. Frankl. Inst. 355(9), 3911–3925 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, L., Li, X., Wang, H., Niu, B.: Global asymptotic stabilization of stochastic feedforward nonlinear systems with input time-delay. Nonlinear Dyn. 83(3), 1503–1510 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, L., Yin, S., Gao, H., Alsaadi, F., Hayat, T.: Adaptive partial-state feedback control for stochastic high-order nonlinear systems with stochastic input-to-state stable inverse dynamic. Automatica 51, 285–291 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Min, H., Xu, S., Zhang, B., Ma, Q.: Output-feedback control for stochastic nonlinear systems subject to input saturation and time-varying delay. IEEE Trans. Autom. Control 64(1), 359–364 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Min, H., Xu, S., Ma, Q., Zhang, B., Zhang, Z.: Composite observer-based output-feedback control for nonlinear time-delay systems with input saturation and its application. IEEE Trans. Ind. Electron. 65(7), 5856–5863 (2018)

    Article  Google Scholar 

  17. Jiang, D., Wang, X., Xu, G., Lin, J.: A denoising-decomposition model combining TV minimisation and fractional derivatives. East Asian J. Appl. Math. 8(3), 447–462 (2018)

    Article  MathSciNet  Google Scholar 

  18. Ma, H., Hou, T.: A separation theorem for stochastic singular linear quadratic control problem with partial information. Acta Math. Appl. Sin. Engl. Ser. 29(2), 303–314 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, R., Liu, Y., Tong, S., Chen, C.: Output feedback stabilization based on dynamic surface control for a class of uncertain stochastic nonlinear systems. Nonlinear Dyn. 67(1), 683–694 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhai, J., Ai, W., Fei, S.: Global output feedback stabilisation for a class of uncertain non-linear systems. IET Control Theory Appl. 7(2), 305–313 (2013)

    Article  MathSciNet  Google Scholar 

  21. Chen, C., Qian, C., Sun, Z., Liang, Y.: Global output feedback stabilization of a class of nonlinear systems with unknown measurement sensitivity. IEEE Trans. Autom. Control 63(7), 2212–2217 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qian, C., Lin, W.: Almost disturbance decoupling for a class of high-order nonlinear systems. IEEE Trans. Autom. Control 45(6), 1208–14 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, W., Qian, C., Huang, X.: Disturbance attenuation of a class of non-linear systems via output feedback. Int. J. Robust Nonlinear Control 13(15), 1359–1369 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, B., Liu, X.: Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping and application to chemical processes. IEEE Trans. Fuzzy Syst. 13(6), 832–847 (2005)

    Article  Google Scholar 

  25. Yang, J., Chen, W., Li, S., Chen, X.: Static disturbance-to-output decoupling for nonlinear systems with arbitrary disturbance relative degree. Int. J. Robust Nonlinear Control 23(5), 562–577 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, C., Yang, J., Li, S., Yang, N.: A generalized active disturbance rejection control method for nonlinear uncertain systems subject to additive disturbance. Nonlinear Dyn. 83(4), 2361–2372 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Marino, R., Tomei, P.: Adaptive output feedback regulation with almost disturbance decoupling for nonlinearly parameterized systems. Int. J. Robust Nonlinear Control 10(8), 655–669 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shang, F., Liu, Y.: Adaptive disturbance attenuation via output feedback for nonlinear systems with polynomial-of-output growth rate. Int. J. Control 87(3), 600–611 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, Z., Zhang, C., Wang, Z.: Adaptive disturbance attenuation for generalized high-order uncertain nonlinear systems. Automatica 80, 102–109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, Z., Liu, X., Liu, Y., Lin, C., Chen, B.: Fixed-time almost disturbance decoupling of nonlinear time-varying systems with multiple disturbances and dead-zone input. Inf. Sci. 450, 267–283 (2018)

    Article  MathSciNet  Google Scholar 

  31. Sepulchre, R., Jankovic, M., Kokotovic, P.: Constructive Nonlinear Control. Springer, New York (1997)

    Book  MATH  Google Scholar 

  32. Ding, S., Qian, C., Li, S.: Global stabilization of a class of feedforward systems with lower-order nonlinearities. IEEE Trans. Autom. Control 55(3), 691–696 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, Z., Song, Z., Li, T., Yang, S.: Output feedback stabilization for high-order uncertain feedforward time-delay nonlinear systems. J. Frankl. Inst. 352(11), 5308–5326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, X., Baron, L., Liu, Q., Boukas, E.: Design of stabilizing controllers with a dynamic gain for feedforward nonlinear time-delay systems. IEEE Trans. Autom. Control 56(3), 692–697 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Krstic, M.: Feedback linearizability and explicit integrator forwarding controllers for classes of feedforward systems. IEEE Trans. Autom. Control 49(10), 1668–1682 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu, Y., Gao, F., Zhang, Z.: Saturated finite-time stabilization of uncertain nonholonomic systems in feedforward-like form and its application. Nonlinear Dyn. 84(3), 1609–1622 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hale, J.: Ordinary Differential Equations. Wley, New York (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong-Yao Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China under Grant 61773237, China Postdoctoral Science Foundation Funded Project under grant 2017M610414, Shandong Province Quality Core Curriculum of Postgraduate Education (SDYKC17079).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, ZY., Wang, M. Disturbance attenuation via double-domination approach for feedforward nonlinear system with unknown output function. Nonlinear Dyn 96, 2523–2533 (2019). https://doi.org/10.1007/s11071-019-04938-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04938-2

Keywords

Navigation