Skip to main content
Log in

Multi-parameter-adjusting stochastic resonance in a standard tri-stable system and its application in incipient fault diagnosis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The weak-signal detection approaches based on stochastic resonance (SR) are beneficial in detecting weak vibration signals from strong background noise. Therefore, many SR-based methods for mechanical incipient fault diagnosis appear. Among various nonlinear SR models, the underdamped tri-stable SR system, which has better output performance than other ones, has shown its potential superiority in weak-signal detection. The shortcomings for this model include its nonstandard forms of nonlinear potential functions and its inadequate research on parameter-adjusting mechanism for parameter-fixed noisy signals. In order to solve these issues, a standard tri-stable SR system is introduced in this paper and its SR performance is studied. Furthermore, a multi-parameter-adjusting SR (MPASR) model for the standard tri-stable system is proposed and its parameter adjustment rules for different input signals to produce SR are fully studied. At last, we propose a weak-signal detection method based on MPASR of the standard tri-stable system and employ two practical examples to demonstrate its feasibility in incipient fault diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen, J., Li, Z., Pan, J., Chen, G., Zi, Y., Yuan, J., Chen, B., He, Z.: Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review. Mech. Syst. Signal Process. 70–71, 1–35 (2016)

    Article  Google Scholar 

  2. Shi, H., Li, W.: The application of chaotic oscillator in detecting weak resonant signal of mems resonator. Rev. Sci. Instrum. 88(5), 055003 (2017)

    Article  Google Scholar 

  3. Feng, Z., Zhang, D., Zuo, M.J.: Adaptive mode decomposition methods and their applications in signal analysis for machinery fault diagnosis: a review with examples. IEEE Access 5, 24301–24331 (2017)

    Article  Google Scholar 

  4. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. Math. General 14(11), L453–L457 (1981)

    Article  MathSciNet  Google Scholar 

  5. Fauve, S., Heslot, F.: Stochastic resonance in a bistable system. Phys. Lett. A 97(1–2), 5–7 (1983)

    Article  Google Scholar 

  6. Mcnamara, B., Wiesenfeld, K., Roy, R.: Observation of stochastic resonance in a ring laser. Phys. Rev. Lett. 60(25), 2626–2629 (1988)

    Article  Google Scholar 

  7. He, M., Xu, W., Sun, Z.: Dynamical complexity and stochastic resonance in a bistable system with time delay. Nonlinear Dyn. 79(3), 1787–1795 (2015)

    Article  MathSciNet  Google Scholar 

  8. Zhong, S., Zhang, L., Wang, H., Ma, H., Luo, M.: Nonlinear effect of time delay on the generalized stochastic resonance in a fractional oscillator with multiplicative polynomial noise. Nonlinear Dyn. 89(2), 1327–1340 (2017)

    Article  MathSciNet  Google Scholar 

  9. Gao, Y., Leng, Y., Javey, A., Tan, D., Liu, J., Fan, S., Lai, Z.: Theoretical and applied research on bistable dual-piezoelectric-cantilever vibration energy harvesting toward realistic ambience. Smart Mater. Struct. 25(11), 115032 (2016)

    Article  Google Scholar 

  10. Zheng, R., Nakano, K., Hu, H., Su, D., Cartmell, M.P.: An application of stochastic resonance for energy harvesting in a bistable vibrating system. J. Sound Vib. 333(12), 2568–2587 (2014)

    Article  Google Scholar 

  11. Kim, H., Tai, W.C., Zhou, S., Zuo, L.: Stochastic resonance energy harvesting for a rotating shaft subject to random and periodic vibrations: influence of potential function asymmetry and frequency sweep. Smart Mater. Struct. 26(11), 115011 (2017)

    Article  Google Scholar 

  12. Lu, S., He, Q., Wang, J.: A review of stochastic resonance in rotating machine fault detection. Mech. Syst. Signal Process. 116, 230–260 (2019)

    Article  Google Scholar 

  13. Lei, Y., Qiao, Z., Xu, X., Lin, J., Niu, S.: An underdamped stochastic resonance method with stable-state matching for incipient fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 94, 148–164 (2017)

    Article  Google Scholar 

  14. Leng, Y.G., Wang, T.Y., Guo, Y., Xu, Y.G., Fan, S.B.: Engineering signal processing based on bistable stochastic resonance. Mech. Syst. Signal Process. 21(1), 138–150 (2007)

    Article  Google Scholar 

  15. Blekhman, I.I., Sorokin, V.S.: On a “deterministic” explanation of the stochastic resonance phenomenon. Nonlinear Dyn. 93(2), 767–778 (2018)

    Article  Google Scholar 

  16. Xu, Y., Wu, J., Zhang, H.Q., Ma, S.J.: Stochastic resonance phenomenon in an underdamped bistable system driven by weak asymmetric dichotomous noise. Nonlinear Dyn. 70(1), 531–539 (2012)

    Article  MathSciNet  Google Scholar 

  17. Zhou, P., Lu, S., Liu, F., Liu, Y., Li, G., Zhao, J.: Novel synthetic index-based adaptive stochastic resonance method and its application in bearing fault diagnosis. J. Sound Vib. 391, 194–210 (2017)

    Article  Google Scholar 

  18. Lai, Z.H., Leng, Y.G.: Generalized parameter-adjusted stochastic resonance of duffing oscillator and its application to weak-signal detection. Sensors 15(9), 21327–21349 (2015)

    Article  Google Scholar 

  19. Agudov, N.V., Krichigin, A.V., Valenti, D., Spagnolo, B.: Stochastic resonance in a trapping overdamped monostable system. Phys. Rev. E 81(5), 051123 (2010)

    Article  Google Scholar 

  20. Yao, M., Xu, W., Ning, L.: Stochastic resonance in a bias monostable system driven by a periodic rectangular signal and uncorrelated noises. Nonlinear Dyn. 67(1), 329–333 (2012)

    Article  MATH  Google Scholar 

  21. Qiao, Z., Lei, Y., Lin, J., Jia, F.: An adaptive unsaturated bistable stochastic resonance method and its application in mechanical fault diagnosis. Mech. Syst. Signal Process. 84, 731–746 (2017)

    Article  Google Scholar 

  22. Qin, Y., Tao, Y., He, Y., Tang, B.: Adaptive bistable stochastic resonance and its application in mechanical fault feature extraction. J. Sound Vib. 333(26), 7386–7400 (2014)

    Article  Google Scholar 

  23. Han, D., Li, P., An, S., Shi, P.: Multi-frequency weak signal detection based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance. Mech. Syst. Signal Process. 70–71, 995–1010 (2016)

    Article  Google Scholar 

  24. Li, J., Chen, X., He, Z.: Multi-stable stochastic resonance and its application research on mechanical fault diagnosis. J. Sound Vib. 332(22), 5999–6015 (2013)

    Article  Google Scholar 

  25. Arathi, S., Rajasekar, S.: Impact of the depth of the wells and multifractal analysis on stochastic resonance in a triple-well system. Phys. Scr. 84(6), 065011 (2011)

    Article  Google Scholar 

  26. Zhang, H., Xu, Y., Xu, W., Li, X.: Logical stochastic resonance in triple-well potential systems driven by colored noise. Chaos 22(4), 043130 (2012)

    Article  MathSciNet  Google Scholar 

  27. Zhang, H., Yang, T., Xu, W., Xu, Y.: Effects of non-gaussian noise on logical stochastic resonance in a triple-well potential system. Nonlinear Dyn. 76(1), 649–656 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shi, P., Li, P., An, S., Han, D.: Stochastic resonance in a multistable system driven by gaussian noise. Discrete Dyn. Nat. Soc. 2016, 1093562 (2016). https://doi.org/10.1155/2016/1093562

    Article  MathSciNet  MATH  Google Scholar 

  29. Shi, P., Su, X., Han, D., Fu, R., Ma, X.: The stable state properties and mean first-passage time of tristable system driven by non-correlated additive and multiplicative non-gaussian noise. Chin. J. Phys. 55(5), 2124–2133 (2017)

    Article  Google Scholar 

  30. Shi, P., An, S., Li, P., Han, D.: Signal feature extraction based on cascaded multi-stable stochastic resonance denoising and emd method. Measurement 90, 318–328 (2016)

    Article  Google Scholar 

  31. Lu, S., He, Q., Zhang, H., Zhang, S., Kong, F.: Note: signal amplification and filtering with a tristable stochastic resonance cantilever. Rev. Sci. Instrum. 84(2), 026110 (2013)

    Article  Google Scholar 

  32. Lu, S., He, Q., Dai, D., Kong, F.: Periodic fault signal enhancement in rotating machine vibrations via stochastic resonance. J. Vib. Control 22(20), 4227–4246 (2016)

    Article  Google Scholar 

  33. Lai, Z.H., Leng, Y.G.: Dynamic response and stochastic resonance of a tri-stable system. Acta Phys. Sin. 64(20), 200503 (2015)

    Google Scholar 

  34. Ghosh, P.K., Bag, B.C., Ray, D.S.: Interference of stochastic resonances: splitting of kramers’ rate. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75(3 Pt 1), 032101 (2007)

    Article  Google Scholar 

  35. Lu, J., Huang, M., Yang, J.-J.: A novel spectrum sensing method based on tri-stable stochastic resonance and quantum particle swarm optimization. Wirel. Pers. Commun. 95(3), 2635–2647 (2017)

    Article  Google Scholar 

  36. Lai, Z.H., Leng, Y.G.: Weak-signal detection based on the stochastic resonance of bistable duffing oscillator and its application in incipient fault diagnosis. Mech. Syst. Signal Process. 81, 60–74 (2016)

    Article  Google Scholar 

  37. Smith, W.A., Randall, R.B.: Rolling element bearing diagnostics using the case western reserve university data: a benchmark study. Mech. Syst. Signal Process. 64–65, 100–131 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Jiangxi Province (CN) (Grant No. 20161BAB216111), Postdoctoral Innovative Talents Support Program of China (No. BX20180250), Science and Technology Research Project of Education Department of Jiangxi Province (Grant No. GJJ150068) and Key Laboratory of Lightweight and High Strength Structural Materials of Jiangxi Province (Grant No. 20171BCD40003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. H. Lai or D. Z. Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Z.H., Liu, J.S., Zhang, H.T. et al. Multi-parameter-adjusting stochastic resonance in a standard tri-stable system and its application in incipient fault diagnosis. Nonlinear Dyn 96, 2069–2085 (2019). https://doi.org/10.1007/s11071-019-04906-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04906-w

Keywords

Navigation