Skip to main content
Log in

A review of operational modal analysis techniques for in-service modal identification

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Vibrations are the root cause of many mechanical and civil structure failures. Dynamic characteristics of a structure must be extracted to better understand structural vibrational problems. Modal analysis is used to determine the dynamic characteristics of a system like natural frequencies, damping ratios and mode shapes. Some of the applications of modal analysis include damage detection, design of a structure/machine for dynamic loading conditions and structural health monitoring. The techniques used for modal analysis are experimental modal analysis (EMA), operational modal analysis (OMA) and a less known technique called impact synchronous modal analysis (ISMA), which is a new development. EMA is performed in simulated controlled environment, while OMA and ISMA are performed when the system is in operation. Although EMA is the oldest modal analysis technique, there is an increasing interest in operational modal analysis techniques in recent years. In this paper, operational modal analysis techniques OMA and ISMA are reviewed with their development over the years and their pros and cons discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

\( \omega \) :

Angular frequency

\( \left[ {\varvec{G}_{{\varvec{xx}}} (\varvec{j\omega })} \right] \) :

Power spectral density (PSD) matrix of the input

\( \left[ {\varvec{G}_{{\varvec{yy}}} (\varvec{j\omega })} \right] \) :

PSD matrix of the output

\( \left[ {\varvec{H}(\varvec{j\omega })} \right] \) :

Frequency response function (FRF) matrix

\( \left[ \varvec{U} \right]_{\varvec{i}} \) :

Eigenvectors of \( \left[ {G_{yy} (j\omega )} \right] \)

\( \left[ \varvec{S} \right]_{\varvec{i}} \) :

Eigenvalues of \( \left[ {G_{yy} (j\omega )} \right] \)

\( \varvec{y}\left( \varvec{t} \right) \) :

System time response/output displacement

\( \varvec{\varphi } \) :

Mode shape

\( c_{i} \) :

\( i \)th modal contribution factor

\( \varvec{Y}_{\varvec{i}} \) :

Mode-isolated output acceleration time history

\( \varvec{E}_{\varvec{i}} \) :

Cross-correlation matrix

\( \varvec{U} \) :

Singular vector matrix of \( Y_{i} \)

\( {\varvec{\Omega}} \) :

Singular value matrix of \( Y_{i} \)

\( f(t) \) :

Input/excitation force

\( x_{ik} \left( t \right) \) :

System response at coordinate I due to force at coordinate k

\( \zeta \) :

Damping ratio

\( m_{r} \) :

Modal mass of mode r

\( E \) :

Expectation operator

\( \varvec{M} \) :

Mass matrix

\( \varvec{C} \) :

Damping matrix

\( \varvec{K} \) :

Stiffness matrix

\( \varvec{y}_{\varvec{k}} \) :

System response/output vector

\( \varvec{e}_{\varvec{k}} \) :

White noise/input vector

\( \varvec{A}_{\varvec{i}} \) :

Auto-regressive (AR) coefficient matrix

\( \varvec{C}_{\varvec{i}} \) :

Moving average (MA) coefficient matrix

\( \varvec{w}_{\varvec{k}} \) :

Process noise

\( \varvec{v}_{\varvec{k}} \) :

Measurement noise

A :

State transition matrix

\( {\varvec{\Psi}} \) :

Eigenvector matrix of A

\( {\varvec{\Lambda}} \) :

Eigenvalue matrix of A

\( R_{i} \) :

Output covariance

\( \varvec{T}_{\varvec{i}} \) :

Output covariance matrix

\( \varvec{O}_{\varvec{i}} \) :

Observability matrix

\( {\varvec{\Gamma}}_{\varvec{i}} \) :

Controllability matrix

\( \lambda_{k } \) :

Eigenvalue of discrete-time system

\( \lambda_{\text{ck}} \) :

Eigenvalue in continuous time system

s r :

Pole of mode r

β :

Phase angle

A :

Amplitude of the impact signature

x(t):

Desired response signal due to impact

e(t):

Undesired signal of random ambient noises

σ r :

Decay rate

R 2 :

Amplitude of the undesired signal

β 1 :

Phase of the desired response signal

β 2 :

Phase of undesired signal of the periodic response of cyclic load

References

  1. Brandt A (2011) Noise and vibration analysis: signal analysis and experimental procedures. Wiley, Chichester

    Google Scholar 

  2. Hermans L, Van der Auweraer H (1999) Modal testing and analysis of structures under operational conditions: industrial applications. Mech Syst Signal Process 13(2):193–216

    Google Scholar 

  3. Díaz RAF, Sarellano MH, Alcantar PC, Verduzco IM (2015) Dynamic response in non-perpendicular stiff main directional rotors using coordinate transformation. J Braz Soc Mech Sci Eng 37(6):1615–1622

    Google Scholar 

  4. Chandravanshi M, Mukhopadhyay A (2017) Analysis of variations in vibration behavior of vibratory feeder due to change in stiffness of helical springs using FEM and EMA methods. J Braz Soc Mech Sci Eng 39(9):3343–3362

    Google Scholar 

  5. Zhang L, Wang T, Tamura Y (2010) A frequency–spatial domain decomposition (FSDD) method for operational modal analysis. Mech Syst Signal Process 24(5):1227–1239

    Google Scholar 

  6. Gevinski JR, Pederiva R (2016) Prediction of dynamic strain using modal parameters. J Braz Soc Mech Sci Eng 38(1):49–57

    Google Scholar 

  7. Xu L-H, Li Z-X, Qian J-R (2011) Test analysis of detection of damage to a complicated spatial model structure. Acta Mech Sin 27(3):399–405

    Google Scholar 

  8. Wang S-Q, Li H-J (2012) Assessment of structural damage using natural frequency changes. Acta Mech Sin 28(1):118–127

    MathSciNet  MATH  Google Scholar 

  9. Wang Y, Huang L, Liu X (2005) Eigenvalue and stability analysis for transverse vibrations of axially moving strings based on Hamiltonian dynamics. Acta Mech Sin 21(5):485–494

    MathSciNet  MATH  Google Scholar 

  10. de Paula Macanhan VB, Correa EO, da Silva JT (2019) Comparing the dynamic response of bead-on-plate and butt-welded plates. J Braz Soc Mech Sci Eng 41(1):17

    Google Scholar 

  11. Grosel J, Sawicki W, Pakos W (2014) Application of classical and operational modal analysis for examination of engineering structures. Procedia Eng 91:136–141

    Google Scholar 

  12. Minette R, SilvaNeto S, Vaz L, Monteiro U (2016) Experimental modal analysis of electrical submersible pumps. Ocean Eng 124:168–179

    Google Scholar 

  13. Pietrzko S, Cantieni R, Deger Y (1996) Modal testing of a steel/concrete composite bridge with a servo-hydraulic shaker. In: Proceedings-SPIE the international society for optical engineering, 1996. SPIE International Society for Optical, pp 91–98

  14. Brincker R, Zhang L, Andersen P (2000) Modal identification from ambient responses using frequency domain decomposition. In: Proceedings of the 18* ‘international modal analysis conference (IMAC), San Antonio, Texas

  15. James G, Carne TG, Lauffer JP (1995) The natural excitation technique (NExT) for modal parameter extraction from operating structures. Modal Anal Int J Anal Exp Modal Anal 10(4):260

    Google Scholar 

  16. Andersen P (1997) Identification of civil engineering structures using vector ARMA models. Department of Building Technology and Structural Engineering

  17. De Moor B, Van Overschee P, Suykens J (1991) Subspace algorithms for system identification and stochastic realization. Proceedings MTNS, Kobe, Japan

  18. Brincker R, Ventura C (2015) Introduction to operational modal analysis. Wiley, Hoboken

    MATH  Google Scholar 

  19. Reynders E (2012) System identification methods for (operational) modal analysis: review and comparison. Arch Comput Methods Eng 19(1):51–124

    MathSciNet  MATH  Google Scholar 

  20. Bendat JS, Piersol AG (2011) Random data: analysis and measurement procedures, vol 729. Wiley, Hoboken

    MATH  Google Scholar 

  21. Bendat J, Piersol A (1993) Engineering applications of correlation and spectral analysis. Wiley, New York

    MATH  Google Scholar 

  22. Felber AJ (1994) Development of a hybrid bridge evaluation system. University of British Columbia, Vancouver

    Google Scholar 

  23. Masjedian M, Keshmiri M (2009) A review on operational modal analysis researches: classification of methods and applications. In: Proceedings of the 3rd IOMAC, pp 707–718

  24. Brincker R, Zhang L, Andersen P (2000) Modal identification from ambient responses using frequency domain decomposition. In: Proceedings of the 18 * international modal analysis conference (IMAC), San Antonio, Texas

  25. Rainieri C, Fabbrocino G (2008) Operational modal analysis: overview and applications. In: Proceedings of the 2nd meeting workshop: strategies for reduction of the seismic risk, pp 29–44

  26. Brincker R, Ventura C, Andersen P (2001) Damping estimation by frequency domain decomposition. In: Proceedings of the 19th international modal analysis conference (IMAC), pp 5–8

  27. Hasan A, Danial M, Ahmad Z, Salman Leong M, Hee L (2018) Enhanced frequency domain decomposition algorithm: a review of a recent development for unbiased damping ratio estimates. J VibroEng 20(5):1919–1936

    Google Scholar 

  28. Brincker R, Andersen P, Jacobsen N-J (2007) Automated frequency domain decomposition for operational modal analysis. In: Proceedings of the 25th international modal analysis conference (IMAC), Orlando, Florida

  29. Brincker R, Zhang L (2009) Frequency domain decomposition revisited. In: Proceedings of the 3rd international operational modal analysis conference (IOMAC’09), pp 615–626

  30. Le T-P, Paultre P (2013) Modal identification based on the time–frequency domain decomposition of unknown-input dynamic tests. Int J Mech Sci 71:41–50

    Google Scholar 

  31. Kim BH, Stubbs N, Park T (2005) A new method to extract modal parameters using output-only responses. J Sound Vib 282(1–2):215–230

    Google Scholar 

  32. Fukuzono K (1986) Investigation of multiple-reference Ibrahim time domain modal parameter estimation technique. University of Cincinnati, Cincinnati

    Google Scholar 

  33. Juang J-N, Pappa RS (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. J Guid Control Dyn 8(5):620–627

    MATH  Google Scholar 

  34. Vold H, Kundrat J, Rocklin GT, Russell R (1982) A multi-input modal estimation algorithm for mini-computers. SAE Trans 91(1):815–821

    Google Scholar 

  35. Kordkheili SH, Massouleh SM, Hajirezayi S, Bahai H (2018) Experimental identification of closely spaced modes using NExT-ERA. J Sound Vib 412:116–129

    Google Scholar 

  36. Ibraham S (1977) A method for the direct identification of vibration parameter from the free responses. Shock Vib Bull 47(4):183–198

    Google Scholar 

  37. Brown DL, Allemang RJ, Zimmerman R, Mergeay M (1979) Parameter estimation techniques for modal analysis. SAE Trans 88:828–846

    Google Scholar 

  38. Zhang L (2013) From traditional experimental modal analysis (EMA) to operational modal analysis (OMA), an overview. In: 5th international operational modal analysis conference, IOMAC 2013, pp 1–14

  39. Ghalishooyan M, Shooshtari A (2015) Operational modal analysis techniques and their theoretical and practical aspects: a comprehensive review and introduction. In: 6th international operational modal analysis conference IOMAC 2015

  40. Lennart L (1999) System identification: theory for the user. PTR Prentice Hall, Upper Saddle River, pp 1–14

    Google Scholar 

  41. Juang J-N (1994) Applied system identification. Prentice-Hall Inc, New Jersey

    MATH  Google Scholar 

  42. Andersen P, Kirkegaard PH (1998) Statistical damage detection of civil engineering structures using ARMAV models. In: Society for experimental mechanics, Inc, 16th international modal analysis conference, 1998, pp 356–362

  43. Andersen P, Brincker R, Kirkegaard PH (1996) Theory of covariance equivalent ARMAV models of civil engineering structures. In: Proceedings-SPIE the international society for optical engineering, 1996. SPIE International Society for Optical, pp 518–524

  44. Andersen P, Brincker R (1998) Estimation of modal parameters and their uncertainties. Instituttet for Bygningsteknik, Aalborg Universitet, Aalborg

    Google Scholar 

  45. Petsounis K, Fassois S (2001) Parametric time-domain methods for the identification of vibrating structures—a critical comparison and assessment. Mech Syst Signal Process 15(6):1031–1060

    Google Scholar 

  46. Bertha M, Golinval J-C (2017) Identification of non-stationary dynamical systems using multivariate ARMA models. Mech Syst Signal Process 88:166–179

    Google Scholar 

  47. Bodeux J-B, Golinval J-C (2001) Application of ARMAV models to the identification and damage detection of mechanical and civil engineering structures. Smart Mater Struct 10(3):479

    Google Scholar 

  48. Van Overschee P, De Moor B (1996) Continuous-time frequency domain subspace system identification. Sig Process 52(2):179–194

    MATH  Google Scholar 

  49. Peeters B, De Roeck G (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Process 13(6):855–878

    Google Scholar 

  50. Kung S-Y (1978) A new identification and model reduction algorithm via singular value decomposition. In: Proceedings 12th Asilomar conference on circuits, systems and computers, Pacific Grove, CA, November, 1978

  51. Van Overschee P, De Moor B (2012) Subspace identification for linear systems: theory—implementation—applications. Springer, Berlin

    MATH  Google Scholar 

  52. Arun K, Kung S (1990) Balanced approximation of stochastic systems. SIAM J Matrix Anal Appl 11(1):42–68

    MathSciNet  MATH  Google Scholar 

  53. Peeters B, De Roeck G (2001) Stochastic system identification for operational modal analysis: a review. J Dyn Syst Meas Control 123(4):659–667

    Google Scholar 

  54. Zhang L, Brincker R (2005) An overview of operational modal analysis: major development and issues. In: 1st international operational modal analysis conference, 2005. Aalborg Universitet, pp 179–190

  55. Qin S, Kang J, Wang Q (2016) Operational modal analysis based on subspace algorithm with an improved stabilization diagram method. Shock Vib 2016:7598965

    Google Scholar 

  56. Van Overschee P, De Moor B (1993) Subspace algorithms for the stochastic identification problem. Automatica 29(3):649–660

    MathSciNet  MATH  Google Scholar 

  57. Rainieri C, Fabbrocino G (2014) Operational modal analysis of civil engineering structures, vol 142. Springer, New York, p 143

    Google Scholar 

  58. Farrokhifard MM, Hatami M, Venkatasubramanian VM (2019) Performance of stochastic subspace identification methods in presence of forced oscillations. In: 2019 international conference on smart grid synchronized measurements and analytics (SGSMA), 2019. IEEE, pp 1–8

  59. Li W, Vu V-H, Liu Z, Thomas M, Hazel B (2018) Extraction of modal parameters for identification of time-varying systems using data-driven stochastic subspace identification. J Vib Control 24(20):4781–4796

    MathSciNet  Google Scholar 

  60. Reynders E, Maes K, Lombaert G, De Roeck G (2016) Uncertainty quantification in operational modal analysis with stochastic subspace identification: validation and applications. Mech Syst Signal Process 66:13–30

    Google Scholar 

  61. Magalhães F, Cunha Á (2011) Explaining operational modal analysis with data from an arch bridge. Mech Syst Signal Process 25(5):1431–1450

    Google Scholar 

  62. Liu F, Wu J, Gu F, Ball AD (2019) An introduction of a robust OMA method: CoS-SSI and its performance evaluation through the simulation and a case study. Shock Vib. https://doi.org/10.1155/2019/6581516

    Article  Google Scholar 

  63. Lim HC (2018) Automated impact device based on phase synchronisation assessment for the enhancement of impact-synchronous modal analysis during operation. University of Malaya, Malaysia

    Google Scholar 

  64. Manzato S, Devriendt C, Weijtjens W, Di Lorenzo E, Peeters B, Guillaume P (2014) Removing the influence of rotor harmonics for improved monitoring of offshore wind turbines. In: Dynamics of civil structures, vol 4. Springer, pp 299–312

  65. Brincker R, Andersen P, Møller N (2000) An indicator for separation of structural and harmonic modes in output-only modal testing. In: Proceedings of the 18th international modal analysis conference, San Antonio, Texas, USA, 7–10 February 2000, pp 1649–1654

  66. Motte K, Weijtjens W, Devriendt C, Guillaume P (2015) Operational modal analysis in the presence of harmonic excitations: a review. In: Dynamics of civil structures, vol 2. Springer, pp 379–395

  67. Le T-P, Argoul P (2015) Distinction between harmonic and structural components in ambient excitation tests using the time–frequency domain decomposition technique. Mech Syst Signal Process 52:29–45

    Google Scholar 

  68. Gres S, Andersen P, Hoen C, Damkilde L (2019) Orthogonal projection-based harmonic signal removal for operational modal analysis. In: Structural health monitoring, photogrammetry & DIC, vol 6. Springer, pp 9–21

  69. Peeters C, Guillaume P, Helsen J (2017) A comparison of cepstral editing methods as signal pre-processing techniques for vibration-based bearing fault detection. Mech Syst Signal Process 91:354–381

    Google Scholar 

  70. Randall R, Antoni J, Smith W (2019) A survey of the application of the cepstrum to structural modal analysis. Mech Syst Signal Process 118:716–741

    Google Scholar 

  71. Agneni A, Coppotelli G, Grappasonni C (2012) A method for the harmonic removal in operational modal analysis of rotating blades. Mech Syst Signal Process 27:604–618

    Google Scholar 

  72. Dion J-L, Stephan C, Chevallier G, Festjens H (2013) Tracking and removing modulated sinusoidal components: a solution based on the kurtosis and the extended Kalman filter. Mech Syst Signal Process 38(2):428–439

    Google Scholar 

  73. Modak S, Rawal C, Kundra T (2010) Harmonics elimination algorithm for operational modal analysis using random decrement technique. Mech Syst Signal Process 24(4):922–944

    Google Scholar 

  74. Peeters B, Cornelis B, Janssens K, Van der Auweraer H (2007) Removing disturbing harmonics in operational modal analysis. In: Proceedings of international operational modal analysis conference, Copenhagen, Denmark

  75. Pintelon R, Peeters B, Guillaume P (2008) Continuous-time operational modal analysis in the presence of harmonic disturbances. Mech Syst Signal Process 22(5):1017–1035

    Google Scholar 

  76. Gioia N, Daems P, Guillaume P, Helsen J (2018) Long term operational modal analysis for rotating machines. In: Journal of physics: conference series, 2018. vol 5. IOP Publishing, p 052035

  77. Mohanty P, Rixen DJ (2004) A modified Ibrahim time domain algorithm for operational modal analysis including harmonic excitation. J Sound Vib 275(1–2):375–390

    Google Scholar 

  78. Mohanty P, Rixen DJ (2004) Modified SSTD method to account for harmonic excitations during operational modal analysis. Mech Mach Theory 39(12):1247–1255

    MATH  Google Scholar 

  79. Mohanty P, Rixen DJ (2004) Operational modal analysis in the presence of harmonic excitation. J Sound Vib 270(1–2):93–109

    Google Scholar 

  80. Mohanty P, Rixen DJ (2006) Modified ERA method for operational modal analysis in the presence of harmonic excitations. Mech Syst Signal Process 20(1):114–130

    Google Scholar 

  81. Devriendt C, De Sitter G, Vanlanduit S, Guillaume P (2009) Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements. Mech Syst Signal Process 23(3):621–635

    Google Scholar 

  82. Weijtjens W, De Sitter G, Devriendt C, Guillaume P (2014) Operational modal parameter estimation of MIMO systems using transmissibility functions. Automatica 50(2):559–564

    MathSciNet  MATH  Google Scholar 

  83. Weijtjens W, Lataire J, Devriendt C, Guillaume P (2014) Dealing with periodical loads and harmonics in operational modal analysis using time-varying transmissibility functions. Mech Syst Signal Process 49(1–2):154–164

    Google Scholar 

  84. Kang J, Liu L, Zhou S-D, Shao Y-P (2019) A novel time-domain representation of transmissibility and its applications on operational modal analysis in the presence of non-white stochastic excitations. J Sound Vib 457:157–180

    Google Scholar 

  85. Brandt A, Berardengo M, Manzoni S, Vanali M, Cigada A (2019) Global scaling of operational modal analysis modes with the OMAH method. Mech Syst Signal Process 117:52–64

    Google Scholar 

  86. Brandt A, Berardengo M, Manzoni S, Cigada A (2017) Scaling of mode shapes from operational modal analysis using harmonic forces. J Sound Vib 407:128–143

    Google Scholar 

  87. Parloo E, Verboven P, Guillaume P, Van Overmeire M (2002) Sensitivity-based operational mode shape normalisation. Mech Syst Signal Process 16(5):757–767

    Google Scholar 

  88. Bernal D (2004) Modal scaling from known mass perturbations. J Eng Mech 130(9):1083–1088

    Google Scholar 

  89. López Aenlle M, Fernández Fernández P, Brincker R, Fernández Canteli AC (2007) Scaling factor estimation using an optimized mass change strategy, part 1: theory. In: Proceedings of the 2nd international operational modal analysis conference, 2007. Aalborg Universitet

  90. Aenlle M, Brincker R (2013) Modal scaling in operational modal analysis using a finite element model. Int J Mech Sci 76:86–101

    Google Scholar 

  91. Cara J (2016) Computing the modal mass from the state space model in combined experimental–operational modal analysis. J Sound Vib 370:94–110

    Google Scholar 

  92. Brandt A, Berardengo M, Manzoni S, Vanali M, Cigada A (2018) Overview of the new OMAH technique for scaling OMA mode shapes. Sound Vib 52(3):18–22

    Google Scholar 

  93. Guillaume P, De Troyer T, Devriendt C, De Sitter G (2006) Omaxa combined experimental-operational modal analysis approach. In: Proceedings of ISMA2006 international conference on noise and vibration engineering, 2006. Leuven, Belgium, pp 2985–2996

  94. Bednarz J (2017) Operational modal analysis for crack detection in rotating blades. Arch Acoust 42(1):105–112

    Google Scholar 

  95. Reynders E, Degrauwe D, Schevenels M, Van den Broeck P, Deckers K, Guillaume P, Magalhas F, Caetano E, Cunha A (2008) OMAX testing of a bow-string and stress-ribbon footbridge. In: Proceedings of ISMA 2008 international conference on noise and vibration engineering, 2008. pp 2549–2562

  96. Reynders E, Degrauwe D, De Roeck G, Magalhães F, Caetano E (2010) Combined experimental-operational modal testing of footbridges. J Eng Mech 136(6):687–696

    Google Scholar 

  97. Reynders E, Teughels A, De Roeck G (2010) Finite element model updating and structural damage identification using OMAX data. Mech Syst Signal Process 24(5):1306–1323

    Google Scholar 

  98. Devriendt C, De Troyer T, De Sitter G, Guillaume P (2012) Transmissibilty-based operational modal analysis for flight flutter testing using exogenous inputs. Shock Vib 19(5):1071–1083

    Google Scholar 

  99. Pioldi F, Salvi J, Rizzi E (2017) Refined FDD modal dynamic identification from earthquake responses with soil-structure interaction. Int J Mech Sci 127:47–61

    Google Scholar 

  100. Mottershead JE, Link M, Friswell MI (2011) The sensitivity method in finite element model updating: a tutorial. Mech Syst Signal Process 25(7):2275–2296

    Google Scholar 

  101. Magalhães F, Cunha A, Caetano E (2012) Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection. Mech Syst Signal Process 28:212–228

    Google Scholar 

  102. Diaz IM, Pereira E, Reynolds P (2012) Integral resonant control scheme for cancelling human-induced vibrations in light-weight pedestrian structures. Struct Control Health Monit 19(1):55–69

    Google Scholar 

  103. Jones C, Reynolds P, Pavic A (2011) Vibration serviceability of stadia structures subjected to dynamic crowd loads: a literature review. J Sound Vib 330(8):1531–1566

    Google Scholar 

  104. Lourens E, Reynders E, De Roeck G, Degrande G, Lombaert G (2012) An augmented Kalman filter for force identification in structural dynamics. Mech Syst Signal Process 27:446–460

    Google Scholar 

  105. Liu F, Wang J, Li M, Gu F, Ball AD (2020) Operational modal analysis of Y25 Bogie via stochastic subspace identification for the condition monitoring of primary suspension systems. In: Proceedings of the 13th international conference on damage assessment of structures, 2020. Springer, pp 166–181

  106. Deraemaeker A, Reynders E, De Roeck G, Kullaa J (2008) Vibration-based structural health monitoring using output-only measurements under changing environment. Mech Syst Signal Process 22(1):34–56

    Google Scholar 

  107. Ali A, Sandhu T, Usman M (2019) Ambient vibration testing of a pedestrian bridge using low-cost accelerometers for SHM applications. Smart Cities 2(1):20–30

    Google Scholar 

  108. Bajrić A, Høgsberg J, Rüdinger F (2018) Evaluation of damping estimates by automated operational modal analysis for offshore wind turbine tower vibrations. Renew Energy 116:153–163

    Google Scholar 

  109. Whelan MJ, Gangone MV, Janoyan KD, Jha R (2009) Real-time wireless vibration monitoring for operational modal analysis of an integral abutment highway bridge. Eng Struct 31(10):2224–2235

    Google Scholar 

  110. Xu Y, Brownjohn JM, Hester D (2019) Enhanced sparse component analysis for operational modal identification of real-life bridge structures. Mech Syst Signal Process 116:585–605

    Google Scholar 

  111. Castellanos-Toro S, Marmolejo M, Marulanda J, Cruz A, Thomson P (2018) Frequencies and damping ratios of bridges through operational modal analysis using smartphones. Constr Build Mater 188:490–504

    Google Scholar 

  112. Brownjohn J, Magalhaes F, Caetano E, Cunha A (2010) Ambient vibration re-testing and operational modal analysis of the Humber Bridge. Eng Struct 32(8):2003–2018

    Google Scholar 

  113. Peeters B, Ventura C (2003) Comparative study of modal analysis techniques for bridge dynamic characteristics. Mech Syst Signal Process 17(5):965–988

    Google Scholar 

  114. Ubertini F, Gentile C, Materazzi AL (2013) Automated modal identification in operational conditions and its application to bridges. Eng Struct 46:264–278

    Google Scholar 

  115. Darbre G, De Smet C, Kraemer C (2000) Natural frequencies measured from ambient vibration response of the arch dam of Mauvoisin. Earthq Eng Struct Dyn 29(5):577–586

    Google Scholar 

  116. Prior A, Oliveira S, Freitas M (2018) Modal identification methods in time domain numerical tests and applications in civil engineering. In: 6th international conference integrity-reliability-failure, 2018. INEGI/FEUP, pp 539–540

  117. Brownjohn JMW, Carden E, Goddard C, Oudin G (2010) Real-time performance monitoring of tuned mass damper system for a 183 m reinforced concrete chimney. J Wind Eng Ind Aerodyn 98(3):169–179

    Google Scholar 

  118. Peeters B, Van der Auweraer H, Vanhollebeke F, Guillaume P (2007) Operational modal analysis for estimating the dynamic properties of a stadium structure during a football game. Shock Vib 14(4):283–303

    Google Scholar 

  119. Brownjohn J (2005) Long-term monitoring of dynamic response of a tall building for performance evaluation and loading characterisation. In: Proceedings of the 1st international operational modal analysis conference, 2005, pp 143–154

  120. Brincker R, Andersen P, Martinez M, Tallavo F (1996) Modal analysis of an offshore platform using two different ARMA approaches. In: The international modal analysis conference, 1996. Society for Experimental Mechanics, pp 1197–1204

  121. Gentile C, Saisi A (2007) Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Constr Build Mater 21(6):1311–1321

    Google Scholar 

  122. Magalhães F, Caetano E, Cunha Á (2008) Operational modal analysis and finite element model correlation of the Braga Stadium suspended roof. Eng Struct 30(6):1688–1698

    Google Scholar 

  123. Dooms D, Degrande G, De Roeck G, Reynders E (2006) Finite element modelling of a silo based on experimental modal analysis. Eng Struct 28(4):532–542

    Google Scholar 

  124. Carne TG, James GH III (2010) The inception of OMA in the development of modal testing technology for wind turbines. Mech Syst Signal Process 24(5):1213–1226

    Google Scholar 

  125. Zare HG, Maleki A, Rahaghi MI, Lashgari M (2019) Vibration modelling and structural modification of combine harvester thresher using operational modal analysis and finite element method. Struct Monit Maint 6(1):33–46

    Google Scholar 

  126. Salehi M, Esfarjani SM, Ghorbani M (2018) Modal parameter extraction of a huge four stage centrifugal compressor using operational modal analysis method. Latin Am J Solids Struct 15(3):1–11

    Google Scholar 

  127. Clarke H, Stainsby J, Carden EP (2011) Operational modal analysis of resiliently mounted marine diesel generator/alternator. In: Rotating machinery, structural health monitoring, shock and vibration, vol 5. Springer, pp 237–244

  128. James G (2003) Modal parameter estimation from space shuttle flight data. In: Proceedings of the 21st international modal analysis conference, Kissimmee, FL

  129. Xie Y, Liu P, Cai G-P (2016) Modal parameter identification of flexible spacecraft using the covariance-driven stochastic subspace identification (SSI-COV) method. Acta Mech Sin 32(4):710–719

    MathSciNet  MATH  Google Scholar 

  130. Rizo-Patron S, Sirohi J (2017) Operational modal analysis of a helicopter rotor blade using digital image correlation. Exp Mech 57(3):367–375

    Google Scholar 

  131. Mironov A, Doronkin P, Priklonsky A, Kabashkin I (2015) Condition monitoring of operating pipelines with operational modal analysis application. Transp Telecommun J 16(4):305–319

    Google Scholar 

  132. Le Clainche S, Moreno-Ramos R, Taylor P, Vega JM (2018) New robust method to study flight flutter testing. J Aircr 56(1):336–343

    Google Scholar 

  133. Rahman AGA, Chao OZ, Ismail Z (2011) Effectiveness of impact-synchronous time averaging in determination of dynamic characteristics of a rotor dynamic system. Measurement 44(1):34–45

    Google Scholar 

  134. Rahman AGA, Ong ZC, Ismail Z (2011) Enhancement of coherence functions using time signals in modal analysis. Measurement 44(10):2112–2123

    Google Scholar 

  135. Ong ZC (2013) Development of impact-synchronous modal analysis technique on motor-driven structure during operation. Jabatan Kejuruteraan Awam, Fakulti Kejuruteraan, Universiti Malaya, Malaysia

  136. Rahman A, Ismail Z, Noroozi S, Ong Z (2014) Enhancement of impact-synchronous modal analysis with number of averages. J Vib Control 20(11):1645–1655

    Google Scholar 

  137. Rahman A, Ismail Z, Noroozi S, Chao O (2013) Impact-synchronous modal analysis (ISMA)-an attempt to find an alternative. In: 5th International operational modal analysis conference, 2013

  138. Ong ZC, Lim HC, Khoo SY, Ismail Z, Kong KK, Rahman AGA (2017) Assessment of the phase synchronization effect in modal testing during operation. J Zhejiang Univ Sci A 18(2):92–105

    Google Scholar 

  139. Chao OZ, Kor M, Arif AM, Brandt A (2015) Experimental validation of phase synchronisation effects in optimising impact-synchronous time averaging. In: 6th international operational modal analysis conference (IOMAC 2015), Gijón, Spain, 12–14 May 2015

  140. Chao OZ, Cheet LH, Yee KS, Rahman AGA, Ismail Z (2016) An experimental investigation on the effects of exponential window and impact force level on harmonic reduction in impact-synchronous modal analysis. J Mech Sci Technol 30(8):3523–3532

    Google Scholar 

  141. Ong Z, Lee C (2015) Investigation of impact profile and isolation effect in automated impact device design and control for operational modal analysis. J Dyn Syst Meas Contr 137(9):094504

    Google Scholar 

  142. Ong ZC, Lim HC, Brandt A (2018) Automated impact device with non-synchronous impacts: a practical solution for modal testing during operation. J Zhejiang Univ Sci A 19(6):452–460

    Google Scholar 

  143. Cheet L, Chao O (2016) Development of adaptive phase control impact device for enhancement of frequency response function in operational modal testing. In: Proceedings of ISMA

  144. Lim HC, Ong ZC, Brandt A (2018) Implementation of phase controlled impact device for enhancement of frequency response function in operational modal testing. J Franklin Inst 355(1):291–313

    MATH  Google Scholar 

  145. Lim HC, Ong ZC, Ismail Z, Khoo SY (2019) A performance study of controlled impact timing on harmonics reduction in operational modal testing. J Dyn Syst Meas Control 141(3):034501

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support and advice given by University of Malaya Faculty Research Grant (GPF001A-2018), Impact-Oriented Interdisciplinary Research Grant (IIRG007B-2019), Advanced Shock and Vibration Research (ASVR) Group of University of Malaya and other project collaborators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Chao Ong.

Additional information

Technical Editor: Thiago Ritto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahid, F.B., Ong, Z.C. & Khoo, S.Y. A review of operational modal analysis techniques for in-service modal identification. J Braz. Soc. Mech. Sci. Eng. 42, 398 (2020). https://doi.org/10.1007/s40430-020-02470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02470-8

Keywords

Navigation