Skip to main content
Log in

Enhancing unimodal digital chaotic maps through hybridisation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Despite sharing many similar properties with cryptography, digitizing chaotic maps for the purpose of developing chaos-based cryptosystems leads to dynamical degradation, causing many security issues. This paper introduces a hybrid chaotic system that enhances the dynamical behaviour of these maps to overcome this problem. The proposed system uses cascade and combination methods as a nonlinear chaotification function. To depict the capability of the proposed system, we apply it to classical chaotic maps and analyse them using theoretical analysis, conventional, fractal and randomness evaluations. Results show that the enhanced maps have a larger chaotic range, low correlation, uniform data distribution and better chaotic properties. As a proof of concept, simple pseudorandom number generators are then designed based on a classical map and its enhanced variant. Security comparisons between the two generators indicate that the generator based on the enhanced map has better statistical properties as compared to its classical counterpart. This finding showcases the capability of the proposed system in improving the performance of chaos-based algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hamza, R.: A novel pseudo random sequence generator for image-cryptographic applications. J. Inf. Secur. Appl. 35, 119–127 (2017)

    Google Scholar 

  2. Ozturk, I., Kilic, R.: A novel method for producing pseudo random numbers from differential equation-based chaotic systems. Nonlinear Dyn. 80, 1147–1157 (2015)

    Article  MathSciNet  Google Scholar 

  3. Lambi, D., Nikoli, M.: Pseudo-random number generator based on discrete-space chaotic map. Nonlinear Dyn. 90, 223–232 (2017)

    Article  MathSciNet  Google Scholar 

  4. Murillo-Escobar, M.A., Cruz-Hernndez, C., Cardoza-Avendao, L., Mndez-Ramrez, R.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87, 407–425 (2017)

    Article  MathSciNet  Google Scholar 

  5. Wang, Y., Liu, Z., Ma, J., He, H.: A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn. 83, 2373–2391 (2016)

    Article  MathSciNet  Google Scholar 

  6. Liu, L., Miao, S.: Delay-introducing method to improve the dynamical degradation of a digital chaotic map. Inf. Sci. 396, 113 (2017)

    Article  Google Scholar 

  7. Deng, Y., Hu, H., Xiong, N., Xiong, W., Liu, L.: A general hybrid model for chaos robust synchronization and degradation reduction. Inf. Sci. 305, 146164 (2015)

    Article  Google Scholar 

  8. Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurc. Chaos 15(10), 31193151 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Wang, Q., Yu, S., Li, C., Lü, J., Fang, X., Guyeux, C., Bahi, J.M.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I Regul. Pap. 63(3), 401412 (2016)

    Article  MathSciNet  Google Scholar 

  10. Hua, Z.Y., Zhou, Y.C., Pun, C.M., Chen, C.L.P.: 2D Sine logistic modulation map for image encryption. Inf. Sci. 297, 8094 (2015)

    Article  Google Scholar 

  11. Zhou, Y.C., Hua, Z.Y., Pun, C.M., Chen, C.L.P.: Cascade chaotic system with applications. IEEE Trans. Cybern. 45(9), 20012012 (2015)

    Google Scholar 

  12. Liu, L., Liu, B., Hu, H., Miao, S.: Reducing the dynamical degradation by bi-coupling digital chaotic maps. Int. J. Bifurc. Chaos 28(5), 1850059 (2018)

    Article  MathSciNet  Google Scholar 

  13. Hua, Z.Y., Zhou, Y.C.: One-dimensional nonlinear model for producing chaos. IEEE Trans. Circuits Syst. I Regul. Pap. 65(1), 235246 (2018)

    Article  Google Scholar 

  14. Teh, J.S., Tan, K., Alawida, M.: A chaos-based keyed hash function based on fixed point representation. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-2870-z

    Article  Google Scholar 

  15. Teh, J.S., Samsudin, A., Akhavan, A.: Parallel chaotic hash function based on the shuffle-exchange. Nonlinear Dyn. 81, 10671079 (2015)

    Article  Google Scholar 

  16. Zhu, Z.W., Leung, H.: Identification of linear systems driven by chaotic signals using nonlinear prediction. IEEE Trans. Circuits Syst. 49(2), 170180 (2002)

    Google Scholar 

  17. Wu, X.G., Hu, H.P., Zhang, B.L.: Parameter estimation only from the symbolic sequences generated by chaos system. Chaos Solitons Fractals 22(2), 359366 (2004)

    Google Scholar 

  18. Ye, G., Huang, X.: An efficient symmetric image encryption algorithm based on an intertwining logistic map. Neurocomputing 251, 4553 (2017)

    Article  Google Scholar 

  19. Garcia-Bosque, M., Prez-Resa, A., Snchez-Azqueta, C., Aldea, C., Celma, S.: Chaos-based bitwise dynamical pseudorandom number generator on FPGA. IEEE Trans. Instrum. Meas. 68(1), 291–293 (2019)

    Article  Google Scholar 

  20. Wheeler, D.D., Matthews, R.A.J.: Supercomputer investigations of a chaotic encryption algorithm. Cryptologia 15(2), 140152 (1991)

    Article  Google Scholar 

  21. Hua, Z.Y., Zhou, B.H., Zhou, Y.C.: Sine chaotification model for enhancing chaos and its hardware implementation. IEEE Trans. Ind. Electron. 66(2), 1273–1284 (2019)

    Article  MathSciNet  Google Scholar 

  22. Nagaraj, N., Shastry, M.C., Vaidya, P.G.: Increasing average period lengths by switching of robust chaos maps in finite precision. Eur. Phys. J. Spec. Top. 165, 7383 (2008)

    Article  Google Scholar 

  23. Wu, Y., Zhou, Y.C., Bao, L.: Discrete wheel-switching chaotic system and applications. IEEE Trans. Circuits Syst. I Regul. Pap. 61(12), 34693477 (2014)

    Article  Google Scholar 

  24. Hu, H.P., Xu, Y., Zhu, Z.G.: A method of improving the properties of digital chaotic system. Chaos Solitons Fractals 38(2), 439446 (2008)

    Article  Google Scholar 

  25. Liu, L.F., Lin, J., Miao, S.X., Liu, B.C.: A double perturbation method for reducing dynamical degradation of the digital baker map. Int. J. Bifurc. Chaos 27(7), 1750103 (2017)

    Article  MathSciNet  Google Scholar 

  26. Tao, S., Ruli, W., Yixun, Y.X.: Perturbance-based algorithm to expand cycle length of chaotic key stream. Electron. Lett. 34(9), 873–874 (1998)

    Article  Google Scholar 

  27. Lv-Chen, C., Yu-Ling, L., Sen-Hui, Q., Jun-Xiu, L.: A perturbation method to the tent map based on Lyapunov exponent and its application. Chin. Phys. B 24(10), 100501 (2015)

    Article  Google Scholar 

  28. Hua, Z.Y., Zhou, Y.C., Pun, C.M., Chen, C.L.P.: A new 1D parameter-control chaotic framework. In: Proceedings of the SPIE 9030, Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2014, 90300M. 110 (2014)

  29. Liu, Y.Q., Luo, Y.L., Song, S.X., Cao, L.C., Liu, J.X., Harkin, J.: Counteracting dynamical degradation of digital chaotic Chebyshev map via perturbation. Int. J. Bifurc. Chaos 27(3), 1750033 (2017)

    Article  MathSciNet  Google Scholar 

  30. Zhang, T.F., Li, S.L., Ge, R.J., Yuan, M., Ma, Y.D.: A novel 1D hybrid chaotic map-based image compression and encryption using compressed sensing and Fibonacci–Lucas transform. Math. Probl. Eng. 2016, 7683687 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Li, C., Lin, D., Feng, B., Lü, J., Hao, F.: Cryptanalysis of a chaotic image encryption algorithm based on information entropy. IEEE Access 6, 75834–75842 (2018)

    Article  Google Scholar 

  32. Li, C., Lin, D., Lü, J., Hao, F.: Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography. IEEE MultiMed. (2019). https://doi.org/10.1109/MMUL.2018.2873472

    Article  Google Scholar 

  33. Li, C.G., Feng, B.B., Li, S.J., Kurths, J., Chen, G.R.: Dynamic analysis of digital chaotic maps via state-mapping networks. IEEE Trans. Circuits Syst. I Regul. Pap. (2018). https://doi.org/10.1109/TCSI.2018.2888688

    Article  Google Scholar 

  34. Skokos, C.: The Lyapunov characteristic exponents and their computation. Lect. Notes Phys. 790, 63–135 (2010)

    Article  Google Scholar 

  35. Sprott, J.C.: Chaos and Time-Series Analysis, pp. 116–117. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  36. Grassbergert, P., Procaccia, T.: Characterization of strange attractors. Phys. Rev. Lett. 50(5), 346–349 (1983)

    Article  MathSciNet  Google Scholar 

  37. Ozkaynak, F.: Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 92, 305313 (2018)

    Article  Google Scholar 

  38. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, pp. 800822. NIST Special Publication (2001)

Download references

Acknowledgements

This work has been partially supported by Universiti Sains Malaysia under Grant No. 304/PKOMP/6316280 and the National Natural Science Foundation of China under Grant No. 61702212.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je Sen Teh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alawida, M., Samsudin, A. & Teh, J.S. Enhancing unimodal digital chaotic maps through hybridisation. Nonlinear Dyn 96, 601–613 (2019). https://doi.org/10.1007/s11071-019-04809-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04809-w

Keywords

Navigation