Skip to main content
Log in

A pseudorandom number generator based on piecewise logistic map

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In order to overcome the disadvantages of logistic map in designing chaos-based cipher, the piecewise logistic map (PLM) is presented. Some properties related to cryptography of the PLM, such as ergodicity, Lyapunov exponent, and bifurcation, are analyzed and compared with the logistic map. From the view of cryptography, the PLM owns better properties than the logistic map. Then, a novel pseudorandom number generator (PRNG) based on the PLM is proposed. Since the cryptographic properties of the PLM are enhanced, the presented PRNG achieves a trade-off between efficiency and security. Both performance analysis and simulation test confirm that our scheme is simple, secure, and efficient, with high potential to be adopted as a stream cipher for secure communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24, 926–934 (2006)

    Article  Google Scholar 

  2. Mandal, M.K., Banik, G.D., Chattopadhyay, D.: An image encryption process based on chaotic logistic map. IETE Tech. Rev. 441, 441–452 (2009)

    Google Scholar 

  3. Wang, Y., Wong, K.W., Liao, X., Chen, G.: A new chaos-based fast image encryption algorithm. Appl. Soft Comput. J. 11(1), 514–522 (2011)

    Article  Google Scholar 

  4. Sethi, N., Sharma, D.: A novel method of image encryption using logistic mapping. Int. J. Comput. Sci. Eng. 1, 115–119 (2012)

    Google Scholar 

  5. Cheng, H., Huang, C., Ding, Q., Chu, S.C.: An efficient image encryption scheme based on ZUC stream cipher and chaotic logistic map. Adv. Intell. Syst. Comput. 298, 301–310 (2014)

    Article  Google Scholar 

  6. Sam, I.S., Devaraj, P., Bhuvaneswaran, R.S.: Transformed logistic block cipher scheme for image encryption. Commun. Comput. Inf. Sci. 132, 70–78 (2011)

    Article  Google Scholar 

  7. LjupcoKocarev, GoceJakimoski: Logistic map as a block encryption algorithm. Phys. Lett. A 289, 199–206 (2001)

    Article  MathSciNet  Google Scholar 

  8. Pareek, N.K., Patidar, V., Sud, K.K.: A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica 33, 441–552 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Pellicer-Lostao, C., López-Ruiz, R.: Pseudo-random bit generation based on 2D chaotic maps of logistic type and its applications in chaotic cryptography. Comput. Sci. Appl. 5073, 784–796 (2008)

    MATH  Google Scholar 

  10. Wang, L.: Research of one way hash function based on logistic mapping. Comput. Eng. Des. 27, 774–776 (2006)

    Google Scholar 

  11. Rani, P.J., Rao, M.S., Bhavani, S.D.: Design of secure chaotic hash function based on logistic and tent maps. Commun. Comput. Inf. Sci. 196, 43–52 (2011)

    Article  Google Scholar 

  12. Li, C.Q., Xie, T., Liu, Q., Cheng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78(2), 1545–1551 (2014)

    Article  Google Scholar 

  13. Li, C.Q., Li, S.J., Asim, M., Juana, N., Gonzalo, A., Chen, G.R.: On the security defects of an image encryption scheme. Image Vis. Comput. 27(9), 1371–1381 (2009)

    Article  Google Scholar 

  14. Francois, M., Grosges, T., Barchiesi, D.: Pseudo-random number generator based on mixing of three chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 4, 887–895 (2014)

    Article  MathSciNet  Google Scholar 

  15. Nian-Sheng, L.: Pseudo-randomness and complexity of binary sequences generated by the chaotic system. Commun. Nonlinear Sci. Numer. Simul. 16, 761–768 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Akhshani, A., Akhavan, A., Mobaraki, A., Lim, S.C., Hassan, Z.: Pseudo random number generator based on quantum chaotic map. Commun. Nonlinear Sci. Numer. Simul. 19, 101–111 (2014)

    Article  Google Scholar 

  17. Chiang, Y.T., Wang, H.S., Wang, Y.N.: A chaotic-based pseudo-random bit generator for navigation applications. Appl. Mech. Mater. 311, 99–104 (2013)

    Article  Google Scholar 

  18. Wang, X.Y., Qin, X.: A new pseudo-random number generator based on CML and chaotic iteration. Nonlinear Dyn. 2, 1589–1592 (2012)

    Article  MathSciNet  Google Scholar 

  19. Li, S.J., Mou, X.Q., Cai, Y.L.: Pseudo-random bit generator based on couple chaotic systems and its application in stream-ciphers cryptography. In: Progress in Cryptology—INDOCRYPT 2001. Lecture Notes in Computer Science, vol. 2247, pp. 316–329 (2001)

  20. Maguire, L.P., Roche, B., McGinnity, T.M., McDaid, L.J.: Predicting a chaotic time series using a fuzzy neural network. Inf. Sci. 112, 125–136 (1998)

    Article  MATH  Google Scholar 

  21. Short, K.M.: Unmasking a modulated chaotic communications scheme. Int. J. Bifurc. Chaos 6(2), 367–375 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Short, K.M.: Steps toward unmasking secure communications. Int. J. Bifurc. Chaos 4(4), 959–977 (1994)

    Article  MATH  Google Scholar 

  23. Hu, H., Liu, L., Ding, N.: Pseudorandom sequence generator based on the Chen chaotic system. Comput. Phys. Commun. 184, 765–768 (2013)

  24. Li, P., Li, Z., Halang, W.A., Chen, G.: A multiple pseudorandom-bit generator based on a spatiotemporal. Phys. Lett. A 349, 467–573 (2006)

    Article  Google Scholar 

  25. Jiulun, F., Xuefeng, Z.: Piecewise logistic chaotic map and its performance analysis. Acta Electron. Sin. 37(4), 720–725 (2009)

    Google Scholar 

  26. Francois, M., Grosges, T., Barchiesi, D., Erra, R.: A new pseudo-random number generator based on two chaotic maps. Informatica 24(2), 181–197 (2013)

    MathSciNet  Google Scholar 

  27. Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., Vulpiani, A.: Predictability in the large: an extension of the concept of Lyapunov exponent. J. Phys. A Math. Gen. 30, 1–26 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hao, B.L.: Starting with Parabolas—An Introduction to Chaotic Dynamics. Shanghai Scientific and Technological Education Publishing House, Shanghai (1993). (in Chinese)

    Google Scholar 

  30. Announcing the advanced encryption standard (AES). Federal Information Processing Standards Publication 197. 2001.2

  31. A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications. NIST Special Publication 800-22 rev1a. 2010

  32. IEEE Standard for Floating-Point Arithmetic. IEEE Computer Society. 2008.8

  33. Akhavan, A., Samsudin, A., Akhshani, A.: Hash function based on piecewise nonlinear chaotic map. Chaos Solitons Fractals 42, 1046–1053 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by grants from the National Natural Science Foundation of China (No. 61472464), the National Social Science Foundation of China (No. 14CTQ026), the Chongqing Research Program of Application Foundation and Advanced Technology (Nos. cstc2013jcyjA40017, cstc2014jcyjA40028), the Foundation of Chongqing Education Committee (No. KJ120506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Z., Ma, J. et al. A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn 83, 2373–2391 (2016). https://doi.org/10.1007/s11071-015-2488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2488-0

Keywords

Navigation