Skip to main content
Log in

Distributed adaptive event-triggered control for attitude synchronization of multiple spacecraft

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the problem of attitude synchronization tracking of multiple spacecraft in the presence of limited inter-spacecraft communication, model uncertainties and external disturbances. A distributed adaptive event-triggered control scheme for attitude synchronization tracking of multiple spacecraft is proposed. In the proposed control scheme, the controllers are updated in an aperiodic manner at the event-sampled instants when a defined event-triggered error exceeds a state-dependent threshold. The inter-spacecraft communication topology in the control scheme is assumed to be undirected. The stability of the resulting closed-loop systems can be guaranteed by application of the Lyapunov function, and no accumulation of triggering instants is also ensured. Finally, simulation results are given to illustrate the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang, P.K.C., Hadaegh, F.Y., Lau, K.: Synchronized formation rotation and attitude control of multiple free-flying spacecraft. J. Guid. Control Dyn. 22(1), 28–35 (1999)

    Article  Google Scholar 

  2. Mesbahi, M., Hadaegh, F.Y.: Formation flying control of multiple spacecraft via graphs, matrix inequalities, and switching. J. Guid. Control Dyn. 24(2), 369–377 (2000)

    Article  Google Scholar 

  3. Subbarao, K., Welsh, S.: Nonlinear control of motion synchronization for satellite proximity operations. J. Guid. Control Dyn. 31(5), 1284–1294 (2008)

    Article  Google Scholar 

  4. Dimarogonas, D.V., Tsiotras, P., Kyriakopoulos, K.J.: Leader-follower cooperative attitude control of multiple rigid bodies. Syst. Control Lett. 58(6), 429–435 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, H., Huang, J.: The leader-following attitude control of multiple rigid spacecraft systems. Automatica 50(4), 1109–1115 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, H., Huang, J.: Leader-following attitude consensus of multiple rigid body systems by attitude feedback control. Automatica 69, 87–92 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tan, X., Cao, J., Li, X., Alsaedi, A.: Leader-following mean square consensus of stochastic multi-agent systems with input delay via event-triggered control. IET Control Theory Appl. 12(2), 299–309 (2018)

    Article  MathSciNet  Google Scholar 

  8. Du, H.B., Li, S.H., Qian, C.J.: Finite-time attitude virtual control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56(11), 2711–2717 (2011)

    Article  MATH  Google Scholar 

  9. Du, H.B., Chen, M.Z., Wen, G.: Leader-following attitude consensus for spacecraft formation with rigid and flexible spacecraft. J. Guidance Control Dyn. 39(4), 944–951 (2016)

    Article  Google Scholar 

  10. Beard, R., Lawton, J., Hadaegh, F.: A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst. Technol. 9(6), 777–790 (2001)

    Article  Google Scholar 

  11. Ren, W., Beard, R.W.: Decentralized scheme for spacecraft formation flying via the virtual structure approach. J. Guid. Control Dyn. 27(1), 72–82 (2004)

    Article  Google Scholar 

  12. Ren, W.: Distributed cooperative attitude synchronization and tracking for multiple rigid bodies. IEEE Trans. Control Syst. Technol. 18(2), 383–392 (2010)

    Article  MathSciNet  Google Scholar 

  13. Cong, B.L., Liu, X.D., Chen, Z.: Distributed attitude synchronization of formation flying via consensus-based virtual structure. Acta Astronaut. 68(11–12), 1973–1986 (2011)

    Article  Google Scholar 

  14. Lawton, J., Beard, R.W.: Synchronized multiple spacecraft rotations. Automatica. 38(8), 1359–1364 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chung, S.J., Ahsun, U., Slotine, J.J.E.: Application of synchronization to formation flying spacecraft: lagrangian approach. J. Guid. Control Dyn. 32(2), 512–526 (2009)

    Article  Google Scholar 

  16. Liang, H., Wang, J., Sun, Z.: Robust decentralized coordinated attitude control of spacecraft formation. Acta Astronaut. 69(5–6), 280–288 (2011)

    Article  Google Scholar 

  17. Bai, H., Arcak, M., Wen, J.T.: Rigid body attitude coordination without inertial frame information. Automatica 44(12), 3170–3175 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sarlette, A., Sepulchre, R., Leonard, N.E.: Autonomous rigid body attitude synchronization. Automatica 45(2), 572–577 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meng, Z.Y., Ren, W., You, Z.: Distributed finite-time attitude containment control for multiple rigid bodies. Automatica. 46(12), 2092–2099 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, H., Li, S.: Attitude synchronization control for a group of flexible spacecraft. Automatica 50(2), 646–651 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, S., Du, H., Shi, P.: Distributed attitude control for multiple spacecraft with communication delays. IEEE Trans. Aerosp. Electron. Syst. 50(3), 1765–1773 (2014)

    Article  Google Scholar 

  22. Zou, A.M., Kumar, K.D., Hou, Z.G.: Attitude coordination control for a group of spacecraft without velocity measurements. IEEE Trans. Control Syst. Technol. 20(5), 1160–1174 (2012)

    Article  Google Scholar 

  23. Zou, A.M., Kumar, K.D.: Robust attitude coordination control for spacecraft formation flying under actuator failures. J. Guid. Control Dyn. 35(4), 1247–1255 (2012)

    Article  Google Scholar 

  24. Zou, A.M.: Distributed attitude synchronization and virtual control for multiple rigid bodies. IEEE Trans. Control Syst. Technol. 22(2), 478–490 (2014)

    Article  Google Scholar 

  25. Thunberg, J., Song, W., Montijano, E., Hong, Y., Hu, X.: Distributed attitude synchronization control of multi-agent systems with switching topologies. Automatica 50(3), 832–840 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, Q., Zhang, J., Ma, G.: Angle velocity free attitude synchronization adaptive tracking control for satellite formation flying with time-varying delays. Acta Autom. Sin. 38(3), 462–468 (2012)

    Article  Google Scholar 

  27. Hu, Q., Zhang, J., Friswell, M.I.: Finite-time coordinated attitude control for spacecraft formation flying under input saturation. ASME J. Dyn. Syst. Meas. Control 137(6), 061012-1-14 (2015)

    Article  Google Scholar 

  28. Zhao, L., Jia, Y.: Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode. Nonlinear Dyn. 78(4), 2779–2794 (2014)

    Article  MATH  Google Scholar 

  29. Du, H., Jia, R.: Synchronization of a class of nonlinear multi-agent systems with sampled-data information. Nonlinear Dyn. 82(3), 1483–1492 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, D., Wang, Q., Duan, Z.: Distributed attitude control for multiple flexible spacecraft under actuator failures and saturation. Nonlinear Dyn. 88(1), 529–546 (2017)

    Article  MATH  Google Scholar 

  31. Wu, B.L., Wang, D.W., Poh, E.K.: Decentralized robust adaptive control for attitude synchronization under directed communication topology. J. Guid. Control Dyn. 34(4), 1276–1282 (2011)

    Article  Google Scholar 

  32. Wu, B.L., Wang, D.W., Poh, E.K.: Decentralized sliding-mode control for attitude synchronization in spacecraft formation. Int. J. Robust Nonlinear Control 23(11), 1183–1197 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, B.L., Wang, D.W., Poh, E.K.: Decentralized sliding-mode control for spacecraft attitude synchronization under actuator failures. Acta Astronaut. 105(1), 333–343 (2014)

    Article  Google Scholar 

  34. Sun, W., Li, Y., Li, C., Chen, Y.: Convergence speed of a fractional-order consensus algorithm over undirected scale-free networks. Asian J. Control 13(6), 936–946 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, W., Bai, Y., Jia, R., Xiong, R., Chen, J.: Multi-group consensus via pinning control with non-linear heterogeneous agents. In: Proceedings of 2011 8th Asian Control Conference, Kaohsiung, China (2011)

  36. Sun, W., Chen, Y., Li, C.: Multi-group consensus of heterogeneous fractional-order dynamics agents via pinning control. In: ASME/IEEE 2011 International Conference on Mechatronics and Embedded Systems and Applications. Washington D.C (2011)

  37. Sun, W., Dou, L., Fang, H., Chen, J.: A multi-robot target tracking algorithm with centroidal voronoi tessellation and consensus strategy. In: Chinese Control Conference. Beijing, China (2010)

  38. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tallapragada, P., Chopra, N.: On event triggered tracking for nonlinear systems. IEEE Trans. Autom. Control 58(9), 2343–2348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Miao, G., Cao, J., Alsaedi, A., Alsaadi, F.E.: Event-triggered containment control for multi-agent systems with constant time delays. J. Frankl. Inst. 354(15), 6956–6977 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hu, A., Cao, J.: Consensus of multi-agent systems via intermittent event-triggered control. Int. J. Syst. Sci. 48(2), 280–287 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hu, A., Cao, J., Hu, M., Guo, L.: Event-triggered consensus of markovian jumping multi-agent systems via stochastic sampling. IET Control Theory Appl. 9(13), 1964–1972 (2015)

    Article  MathSciNet  Google Scholar 

  43. Wu, L.B., Shen, Q., Cao, X.B.: Event-triggered attitude control of spacecraft. Adv. Space Res. 61(3), 927–934 (2018)

    Article  Google Scholar 

  44. Weng, S.X., Yue, D.: Distributed event-triggered cooperative attitude control of multiple rigid bodies with leader-follower architecture. Int. J. Syst. Sci. 47(3), 631–643 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Behera, A.K., Bandyopadhyay, B.: Event-triggered sliding mode control for a class of nonlinear systems. Int. J. Control 89(9), 1916–1931 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. VanDyke, M.C., Hall, C.D.: Decentralized coordinated attitude control within a formation of spacecraft. J. Guid. Control Dyn. 29(5), 1101–1109 (2006)

    Article  Google Scholar 

  47. Wu, B.: Spacecraft attitude control with input quantization. J. Guid. Control Dyn. 39(1), 176–180 (2016)

    Article  Google Scholar 

  48. Malcolm, D.: Shuster, a survey of attitude representation. J. Astronaut. Sci. 41(4), 439–517 (1993)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Funded under the National Natural Science Foundation of China (Grant Nos. 61873312, 61603115) and the Natural Science Foundation of Heilongjiang Province of China (Grant No. ZD201414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baolin Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Wu, B., Cao, X. et al. Distributed adaptive event-triggered control for attitude synchronization of multiple spacecraft. Nonlinear Dyn 95, 2625–2638 (2019). https://doi.org/10.1007/s11071-018-4706-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4706-z

Keywords

Navigation