Skip to main content
Log in

Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the attitude synchronization control problem for a group of spacecraft. Considering inertia uncertainties and external disturbances with unknown bounds, a decentralized adaptive control scheme is developed using nonsingular fast terminal sliding mode (NFTSM). A multispacecraft NFTSM is firstly designed, which contains the advantages of the nonsingular terminal sliding mode and the traditional linear sliding mode together. Then, the continuous decentralized adaptive NFTSM control laws with boundary layer by employing NFTSM associated with novel adaptive architecture are proposed, which can eliminate the chattering, and guarantee the attitude tracking errors converge to the regions containing the origin in finite time. At last, numerical simulations are presented to demonstrate the performance of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang, P., Hadaegh, F., Lau, K.: Synchronized formation rotation and attitude control of multiple free-flying spacecraft. J. Guid. Control Dyn. 22, 28–35 (1999)

    Article  Google Scholar 

  2. Subbarao, K., Welsh, S.: Nonlinear control of motion synchronization for satellite proximity operations. J. Guid. Control Dyn. 31, 1284–1294 (2008)

    Article  Google Scholar 

  3. Ren, W., Beard, R.: Formation feedback control for multiple spacecraft via virtual structures. IEE Proc. Control Theory Appl. 151, 357–368 (2004)

    Article  Google Scholar 

  4. Xin, M., Balakrishnan, S., Pernicka, H.: Position and attitude control of deep-space spacecraft formation flying via virtual structure and \(\theta -D\) technique. ASME J. Dyn. Sys. Meas. Control 129, 689–698 (2007)

    Article  Google Scholar 

  5. Van Dyke, M., Hall, C.: Decentralized coordinated attitude control within a formation of spacecraft. J. Guid. Control Dyn. 29, 1101–1109 (2006)

    Article  Google Scholar 

  6. Jin, E., Jiang, X., Sun, Z.: Robust decentralized attitude coordination control of spacecraft formation. Syst. Control Lett. 57, 567–577 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chung, S., Ahsun, U., Slotine, J.: Application of synchronization to formation flying spacecraft: Lagrangian approach. J. Guid. Control Dyn. 32, 512–526 (2009)

    Article  Google Scholar 

  8. Bai, H., Arcak, M., Wen, J.: Rigid body attitude coordination without inertial frame information. Automatica 44, 3170–3175 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dimarogonasa, D., Tsiotras, P., Kyriakopoulos, K.: Leader–follower cooperative attitude control of multiple rigid bodies. Syst. Control Lett. 58, 429–435 (2009)

    Article  Google Scholar 

  10. Ren, W.: Formation keeping and attitude alignment for multiple spacecraft through local interactions. J. Guid. Control Dyn. 30, 633–638 (2007)

    Article  Google Scholar 

  11. Ren, W.: Distributed cooperative attitude synchronization and tracking for multiple rigid bodies. IEEE Trans. Control Syst. Technol. 18, 383–292 (2010)

    Article  Google Scholar 

  12. Du, H., Li, S.: Attitude synchronization control for a group of flexible spacecraft. Automatica 50, 646–651 (2014)

    Article  MathSciNet  Google Scholar 

  13. Olfati-Saber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49, 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  14. Ren, W., Beard, R., Atkins, E.: Information consensus in multi-vehicle cooperative control. IEEE Control Syst. Mag. 27, 71–82 (2007)

    Article  Google Scholar 

  15. Liu, Y., Jia, Y.: An iterative learning approach to formation control of multi-agent systems. Syst. Control Lett. 61, 148–154 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zou, A., Kumar, K.: Neural network-based adaptive output feedback formation control for multi-agent systems. Nonlinear Dyn. 70, 1283–1296 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jiang, F., Wang, L.: Finite-time weighted average consensus with respect to a monotonic function and its application. Syst. Control Lett. 60, 718–725 (2011)

    Article  MATH  Google Scholar 

  18. Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55, 950–955 (2010)

    Article  MathSciNet  Google Scholar 

  19. Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47, 1706–1712 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Meng, D., Jia, Y.: Iterative learning approaches to design finite-time consensus protocols for multi-agent systems. Syst. Control Lett. 61, 187–194 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Khoo, S., Xie, L., Man, Z.: Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Trans. Mechatron. 14, 219–228 (2009)

    Article  Google Scholar 

  22. Zhao, L., Hua, C.: Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM. Nonlinear Dyn. 75, 311–318 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang, B., Jia, Y., Du, J., Zhang, J.: Finite-time synchronous control for multiple manipulators with sensor saturations and a constant reference. IEEE Trans. Control Syst. Technol. 22, 1159–1165 (2014)

    Article  Google Scholar 

  24. Du, H., Li, S., Ding, S.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56, 2711–2717 (2011)

    Article  Google Scholar 

  25. Zhou, J., Hu, Q., Friswell, M.: Decentralized finite time attitude synchronization control of satellite formation flying. J. Guid. Control Dyn. 36, 185–195 (2013)

    Article  Google Scholar 

  26. Venkataraman, S., Gulati, S.: Terminal sliding modes: a new approach to nonlinear control systems. In: Fifth International Conference on Advanced Robotics, pp. 443–448 (1991)

  27. Man, Z., Paplinski, A., Wu, H.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Autom. Control 39, 24642469 (1994)

    MathSciNet  Google Scholar 

  28. Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73, 229–244 (2013)

    Article  MATH  Google Scholar 

  29. Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust. Nonlinear Control 21, 686–702 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lu, K., Xia, Y.: Finite-time attitude stabilization for rigid spacecraft. Int. J. Robust. Nonlinear Control (2013, in press). doi:10.1002/rnc.3071

  31. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49, 3591–3599 (2013)

    Article  MathSciNet  Google Scholar 

  32. Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38, 2159–2167 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yu, X., Man, Z.: Fast terminal sliding mode control design for nonlinear dynamic systems. IEEE Trans. Circuits Syst. I 39, 261–264 (2002)

    MathSciNet  Google Scholar 

  34. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957–1964 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Yang, L., Yang, J.: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust. Nonlinear Control 21, 1865–1879 (2011)

    Article  MATH  Google Scholar 

  36. Liang, H., Sun, Z., Wang, J.: Robust decentralized attitude control of spacecraft formations under time-varying topologies, model uncertainties and disturbances. Acta Astronaut. 81, 445–455 (2012)

    Article  Google Scholar 

  37. Zou, A., Kumar, K.: Distributed attitude coordination control for spacecraft formation flying. IEEE Trans. Aerosp. Electron. Syst. 48, 1329–1346 (2012)

    Article  Google Scholar 

  38. Wu, B., Wang, D., Poh, E.: Decentralized robust adaptive control for attitude synchronization under directed communication topology. J. Guid. Control Dyn. 34, 1276–1282 (2011)

    Article  Google Scholar 

  39. Wu, B., Wang, D., Poh, E.: Decentralized sliding-mode control for attitude synchronization in spacecraft formation. Int. J. Robust. Nonlinear Control 23, 1183–1197 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. Schaub, H., Akella, M.R., Junkins, J.L.: Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics. J. Guid. Control Dyn. 24, 95–100 (2001)

    Article  Google Scholar 

  41. Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42, 1177–1182 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. Ren, W.: Distributed attitude alignment in spacecraft formation flying. Int. J. Adapt. Control Signal Process. 21, 95–113 (2007)

    Article  MATH  Google Scholar 

  43. Du, H., Li, S.: Finite-time attitude stabilization for a spacecraft using homogeneous method. J. Guid. Control Dyn. 35, 740–748 (2012)

  44. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  45. Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program: 2012CB821200, 2012CB821201) and the NSFC (61134005, 61221061, 61327807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Jia, Y. Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode. Nonlinear Dyn 78, 2779–2794 (2014). https://doi.org/10.1007/s11071-014-1625-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1625-5

Keywords

Navigation