Skip to main content
Log in

Secure communication on fractional-order chaotic systems via adaptive sliding mode control with teaching–learning–feedback-based optimization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Due to the significance of secure communication, we do a research about this problem based on fractional-order chaotic systems, where a communication scheme is presented for encryption and decryption of the signal. Through applying Lyapunov stability theory and property of fractional calculus, an adaptive sliding mode controller is designed to achieve the synchronization phase between encryption system with encryption source and decryption system, which offers a tool to the decryption process. To improve the precision and speed of the decryption, we further put forward an optimization strategy for some parameters of the developed controller based on root mean square error of certain variable as a performance indicator. Meanwhile, as an improved teaching–learning-based optimization algorithm, teaching–learning–feedback-based optimization (TLFBO) algorithm is proposed to optimize the parameters more excellently. Subsequently, the simulation experiments, which contain performance test for TLFBO algorithm and secure communication of the signal, are, respectively, conducted on the benchmark functions as well as fractional-order Lorenz system with encryption source and fractional-order Lü system. At last, the experiment results illustrate the feasibility and practicability of the provided method by comparing with some other ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lim, Y.-H., Oh, K.-K., Ahn, H.-S.: Stability and stabilization of fractional-order linear systems subject to input saturation. IEEE Trans. Autom. Control 58(4), 1062–1067 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Luo, S., Li, S., Tajaddodianfar, F., Hu, J.: Observer-based adaptive stabilization of the fractional-order chaotic MEMS resonator. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4109-1

  3. Hegazi, A.S., Ahmed, E., Matouk, A.E.: On chaos control and synchronization of the commensurate fractional order Liu system. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1193–1202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y., Vinagre, B.M.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)

    MATH  Google Scholar 

  5. Zhang, X., Qi, Y.: Design of an assemble-type fractional-order unit circuit and its application in Lorenz system. IET Circuits Devices Syst. 11(5), 437–445 (2017)

    Article  Google Scholar 

  6. Petráš, I.: Chaos in the fractional order Volta’s system: modeling and simulation. Nonlinear. Dyn. 57(1–2), 157–170 (2009)

    Article  MATH  Google Scholar 

  7. Wang, Z., Huang, X., Shi, G.D.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62(3), 1531–1539 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jia, H.Y., Chen, Z.Q., Qi, G.Y.: Chaotic characteristics analysis and circuit implementation for a fractional-order system. IEEE Trans. Circuits Syst. I 61(3), 845–853 (2014)

    Article  Google Scholar 

  9. Yau, H.-T., Wu, S.-Y., Chen, C.-L., Li, Y.-C.: Fractional-order chaotic self-synchronization-based tracking faults diagnosis of ball bearing systems. IEEE Trans. Ind. Electron. 63(6), 3824–3833 (2016)

    Article  Google Scholar 

  10. Xu, Y., Wang, H., Li, Y., Pei, B.: Image encryption based on synchronization of fractional chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3753–3744 (2014)

    Article  MathSciNet  Google Scholar 

  11. Pu, Y.-F., Yuan, X., Yu, B.: Analog circuit implementation of fractional-order memristor: arbitrary-order lattice scaling fracmemristor. IEEE Trans. Circuits Syst. I PP(99), 1–14 (2018)

    Google Scholar 

  12. Debbarma, S., Dutta, A.: Utilizing electric vehicles for LFC in restructured power systems using fractional order controller. IEEE Trans. Smart Grid 8(6), 2554–2564 (2017)

    Article  Google Scholar 

  13. Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Sling mode control for generalized robust synchronization of mismatched fractional order dynamical systems and its application to secure transmission of voice messages. ISA Trans. (2017). https://doi.org/10.1016/j.isatra.2017.07.007

  14. Srivastava, M., Ansari, S.P., Agrawal, S.K., Das, S., Leung, A.Y.T.: Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dyn. 76(2), 905–914 (2014)

    Article  MathSciNet  Google Scholar 

  15. Luo, S., Li, S., Tajaddodianfar, F., Hu, J.: Adaptive synchronization of the fractional-order chaotic arch micro-electro-mechanical system via Chebyshev neural network. IEEE Sensors J. 18(1), 3524–3532 (2018)

    Article  Google Scholar 

  16. Li, D., Zhang, X.-P., Hu, Y.-T., Yang, Y.-Y.: Adaptive impulsive synchronization of fractional order chaotic system with uncertain and unknown parameters. Neurocomputing 167, 165–171 (2015)

    Article  Google Scholar 

  17. Wang, F., Yang, Y., Hu, A., Xu, X.: Exponential synchronization of fractional-order complex networks via pinning impulsive control. Nonlinear Dyn. 82(4), 1979–1987 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lassoued, A., Boubaker, O.: Hybrid synchronization of multiple fractional-order chaotic systems with ring connection. In: Proceedings of International Conference on Modelling, Identification and Control, Algiers, Algeria, November, pp. 109-114 (2016)

  19. Liu, L., Liang, D., Liu, C.: Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system. Nonlinear Dyn. 69(4), 1929–1939 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xue, W, Zhang, M., Rui Wang, R: Synchronization of fractional-order PMSM chaotic model based on backstepping control method. In: Proceedings of International Conference on Modelling, Identification and Control, Kunming, China, pp. 647–651 (2017)

  21. Luo, S., Li, S., Tajaddodianfar, F.: Adaptive chaos control of the fractional-order arch MEMS resonator. Nonlinear Dyn. 91(1), 539–547 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, M., Shao, S.Y., Shi, P., Shi, Y.: Disturbance-observer-based robust synchronization control for a class of fractional-order chaotic systems. IEEE Trans. Circuits Syst. II 64(4), 417–421 (2017)

    Article  Google Scholar 

  23. Bigdeli, N., Ziazi, H.A.: Design of fractional robust adaptive intelligent controller for uncertain fractional-order chaotic systems based on active control technique. Nonlinear Dyn. 87(3), 1703–1719 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou, P., Zhu, P.: A practical synchronization approach for fractional-order chaotic systems. Nonlinear Dyn. 89(3), 1719–1726 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gao, L., Wang, Z., Zhou, K., Zhu, W., Wu, Z., Ma, T.: Modified sliding mode synchronization of typical three-dimensional fractional-order chaotic systems. Neurocomputing 166, 53–58 (2015)

    Article  Google Scholar 

  26. Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem. Int. J. Dyn. Control 5(1), 115–123 (2017)

    Article  MathSciNet  Google Scholar 

  27. Yin, L., Deng, Z., Huo, B., Xia, Y.: Finite-Time synchronization for chaotic Gyros systems with terminal sliding mode control. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–10 (2017)

    Article  Google Scholar 

  28. Du, H., He, Y., Cheng, Y.: Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control. IEEE Trans. Circuits Syst. I 61(6), 1778–1788 (2014)

    Article  Google Scholar 

  29. Xu, C., Yang, X., Lu, J., Feng, J., Alsaadi, F.E., Hayat, T.: Finite-time synchronization of networks via quantized intermittent pinning control. IEEE Trans. Cybern. PP(99), 1–7 (2017)

    Google Scholar 

  30. Delavari, H., Mohadeszadeh, M.: Robust finite-time synchronization of non-identical fractional-order hyperchaotic systems and its application in secure communication. IEEE/CAA J. Autom. Sin. PP(99), 1–8 (2016)

    Google Scholar 

  31. N’Doye, I., Voos, H., Darouach, M.: Observer-based approach for fractional-order chaotic synchronization and secure communication. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 442–450 (2013)

    Article  Google Scholar 

  32. Dasgupta, T., Paral, P., Bhattacharya, S.: Fractional-order sliding mode control based chaos synchronization and secure communication. In: Proceedings of International Conference on Computer Communication and Informatics, Coimbatore, India, pp. 1–6 (2015)

  33. Souaia, M.A., Trabelsi, H., Saad, K.B.: Synchronization of the Liu chaotic system and its application in secure communication. In: Proceedings of International Conference on Control, Automation and Diagnosis, Hammamet, Tunisia, pp. 434–438 (2017)

  34. Wang, X.-Y., Song, J.-M.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3351–3357 (2009)

    Article  MATH  Google Scholar 

  35. Aguiar, B., González, T., Bernal, M.: A way to exploit the fractional stability domain for robust chaos suppression and synchronization via LMIs. IEEE Trans. Autom. Control 61(10), 2796–2807 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pan, L., Zhou, W., Zhou, L., Sun, K.: Chaos synchronization between two different fractional-order hyperchaotic systems. Commun. Nonlinear Sci. Numer. Simul. 16(6), 2628–2640 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, L., Yan, Y.: Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control. Nonlinear Dyn. 76(3), 1761–1767 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, Q., Qi, D.-L.: Synchronization for fractional order chaotic systems with uncertain parameters. Int. J. Control Autom. Syst. 14(1), 211–216 (2016)

    Article  Google Scholar 

  39. Maheri, M., Arifin, N.M.: Synchronization of two different fractional-order chaotic systems with unknown parameters using a robust adaptive nonlinear controller. Nonlinear Dyn. 85(2), 825–838 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xia, Y., Yang, Z., Han, M.: Lag synchronization of unknown chaotic delayed Yang–Yang-type fuzzy neural networks with noise perturbation based on adaptive control and parameter identification. IEEE Trans. Neural Netw. 20(7), 1165–1180 (2009)

    Article  Google Scholar 

  41. Lin, T.-C., Lee, T.-Y.: Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans. Fuzzy Syst. 19(4), 623–635 (2011)

    Article  Google Scholar 

  42. Lu, J.-G., Hill, D.J.: Global asymptotical synchronization of chaotic Lur’e system using sampled data: a linear matrix inequality approach. IEEE Trans. Circuits Syst. II 55(6), 586–590 (2008)

    Article  Google Scholar 

  43. Zhang, C.-K., He, Y., Wu, M.: Improved global asymptotical synchronization of chaotic Lur’e systems with sampled-data control. IEEE Trans. Circuits Syst. II 56(4), 320–324 (2009)

    Article  Google Scholar 

  44. Li, R.-G., Wu, H.-N.: Adaptive synchronization control based on QPSO algorithm with interval estimation for fractional-order chaotic systems and its application in secret communication. Nonlinear Dyn. 92(3), 935–959 (2018)

    Article  MATH  Google Scholar 

  45. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Slotine, J.-J.E., Li, W.P.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  47. He, S., Sun, K.: Dynamics of the fractional-order Lorenz system based on Adomian decomposition method and its DSP implementation. IEEE/CAA J. Autom. Sin. PP(99), 1–6 (2016)

    Google Scholar 

  48. Hsu, H.-P.: Solving feeder assignment and component sequencing problems for printed circuit board assembly using particle swarm optimization. IEEE Trans. Autom. Sci. Eng. 14(2), 881–893 (2017)

    Article  Google Scholar 

  49. Maji, T.K., Acharjee, P.: Multiple solutions of optimal PMU placement using exponential binary PSO algorithm for smart grid applications. IEEE Trans. Ind. Appl. 53(3), 2550–2559 (2017)

    Article  Google Scholar 

  50. Tian, G., Zhou, M.C., Li, P., Zhang, C., Jia, H.: Multiobjective optimization models for locating vehicle inspection stations subject to stochastic demand, varying velocity and regional constraints. IEEE Trans. Intell. Transp. Syst. 17(7), 1978–1987 (2016)

    Article  Google Scholar 

  51. Gunji, B., Deepak, B.B.B.V.L., Bahubalendruni, C.M.V.A.R., Biswal, D.B.B.: An optimal robotic assembly sequence planning by assembly subsets detection method using teaching learning-based optimization algorithm. IEEE Trans. Autom. Sci. Eng. PP(99), 1–17 (2018)

  52. Li, X., Li, K., Yang, Z.: Teaching-learning-feedback-based optimization. In: Proceedings of International Conference in Swarm Intelligence, Fukuoka, Japan, July–August, pp. 71–79 (2017)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NNSFC) (No. 61522302). In addition, the authors would like to thank the editor and reviewers for their valuable suggestions on improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai-Ning Wu.

Ethics declarations

Conflict of interest

The authors declare that this research complies with ethical standards, as well as there is no conflict of interests regarding the publication of this manuscript.

Appendix

Appendix

Lemma 2

Letting \(a_{i}\in \mathbb {R}\) for \(i=1,2,\ldots ,n\), \(r\in [0,\infty )\), there exists the inequality described as follows

$$\begin{aligned} \sum \limits _{i=1}^{n}|a_{i}|^{r}\ge \left( \sum \limits _{i=1}^{n}a_{i}^{2}/n^{2}\right) ^{\frac{r}{2}} \end{aligned}$$
(51)

Particularly, another inequality holds in the following

$$\begin{aligned} \sum \limits _{i=1}^{n}|a_{i}|\ge \sqrt{\sum \limits _{i=1}^{n}a_{i}^{2}/n^{2}} \end{aligned}$$
(52)

Proof

It is known that there is the following inequality meeting the condition of this lemma

$$\begin{aligned} \left( \sum \limits _{i=1}^{n}|a_{i}|\right) ^{r} \le \bigl (n\underset{i=1,2,\ldots ,n}{\mathrm {max}}\{|a_{i}|\}\bigr )^{r} \le n^{r}\sum \limits _{i=1}^{n}|a_{i}|^{r} \end{aligned}$$
(53)

So we have

$$\begin{aligned} \sum \limits _{i=1}^{n}|a_{i}|^{r}\ge \left( \sum \limits _{i=1}^{n}|a_{i}|\right) ^{r}/n^{r} \end{aligned}$$
(54)

Since \(\bigl (\sum \nolimits _{i=1}^{n}|a_{i}|\bigr )^{2}\ge \sum \nolimits _{i=1}^{n}a_{i}^{2}\), (51) can be obtained according to (54). For (51), let \(r=1\), then (52) would be derived. Thus, the proof of this lemma is complete. \(\square \)

Theorem 4

Based on the conditions in Sect. 3.1 and Remark 5, in addition to corresponding adjustments for (12) and (13), the rest of this theorem is the same as that in Theorem 1, in which the sliding mode surface is set as

$$\begin{aligned} \varvec{s}(t)=\varvec{e}(t)-\int _{t_{0}}^{t}\varvec{K}\varDelta (\mathrm {sign} (\varvec{e}(\tau )),|\varvec{e}(\tau )|^{\mu })\, \mathrm{d}\tau \end{aligned}$$
(55)

where \(\mu >0\), \(|\varvec{e}(\tau )|^{\mu }\triangleq [|e_{1}(\tau )|^{\mu },|e_{2}(\tau )|^{\mu },\ldots ,|e_{n+1}(\tau )|^{\mu }]^{T}\), \(\mathrm {sign}(\varvec{e}(\tau ))\triangleq [\mathrm {sign}(e_{1}(\tau )),\mathrm {sign}(e_{2}(\tau )),\ldots ,\mathrm {sign}(e_{n+1}(\tau ))]^{T}\), \(\Delta (\mathrm {sign}(\varvec{e}(\tau )),|\varvec{e}(\tau )|^{\mu })\triangleq \mathrm {diag}\{\mathrm {sign}(\varvec{e}(\tau ))\}\cdot |\varvec{e}(\tau )|^{\mu }\). Besides, the controller is developed as

$$\begin{aligned} \varvec{u}(t)&=(\varvec{H}^{T}\varvec{H})^{-1}\varvec{H}^{T}J^{\varvec{1}-\varvec{q}}\{D^{\varvec{1}-\breve{\varvec{p}}}\breve{\varvec{f}}(\breve{\varvec{x}}(t-\tau ))\nonumber \\&\quad -\varvec{H}D^{\varvec{1}-\varvec{q}}\varvec{g}(\varvec{y}(t))+D^{\varvec{1}-\breve{\varvec{p}}}[\breve{\varvec{F}}(\breve{\varvec{x}}(t-\tau ))\widetilde{\varvec{\alpha }}(t-\tau )]\nonumber \\&\quad -\varvec{H}D^{\varvec{1}-\varvec{q}}[\varvec{G}(\varvec{y}(t))\widetilde{\varvec{\beta }}(t)]+\varvec{K}{\Delta }(\mathrm {sign}(\varvec{e}(t)),|\varvec{e}(t)|^{\mu })\nonumber \\&\quad -(\widetilde{\varvec{D}}(t)+\varvec{C})\mathrm {sign}(\varvec{s}(t))-[\widetilde{\varvec{M}}(t)+\sigma (\Vert \widetilde{\varvec{A}}(t-\tau )\Vert \nonumber \\&\quad +\overline{A}+\Vert \widetilde{\varvec{B}}(t)\Vert +\overline{B}+\sqrt{2\sigma _{1}}\Vert \widetilde{\varvec{d}}(t)\Vert +\sqrt{2\sigma _{1}}\overline{d}\nonumber \\&\quad +\sqrt{2\sigma _{2}}\Vert \widetilde{\varvec{m}}(t)\Vert +\sqrt{2\sigma _{2}}\overline{m})/\Vert \varvec{s}(t)\Vert ^{2}]\varvec{s}(t)\}+\varvec{u}_{0} \end{aligned}$$
(56)

where \(\varvec{C}=\mathrm {diag}\{c_{1},c_{2},\ldots ,c_{n+1}\}>0\), \(0<\sigma \le c_{\text {min}}=\mathrm {min}_{i=1,2,\ldots ,n+1}\{c_{i}\}\), \(\sigma _{i}\in \mathbb {R}^{+}\) for \(i=1,2\), \(\Vert \cdot \Vert \) represents Euclidean norm. Besides, \(\overline{A}=\mathrm {sup}_{t\ge t_{0}+\tau }\{\Vert \varvec{A}(t-\tau )\Vert \}\), \(\overline{B}=\mathrm {sup}_{t\ge t_{0}}\{\Vert \varvec{B}(t)\Vert \}\), \(\overline{d}=\mathrm {sup}_{t\ge t_{0}}\{\Vert \varvec{d}(t)\Vert \}\), and \(\overline{m}=\mathrm {sup}_{t\ge t_{0}}\{\Vert \varvec{m}(t)\Vert \}\), in which \(\overline{A}\), \(\overline{B}\), \(\overline{d}\) and \(\overline{m}\) are known positive constants. Then, when \(\mu \in (0,1)\), the drive system and response system can realize finite-time synchronization within T. When \(\mu \ge 1\), the asymptotic synchronization would be reached between the two systems.

Proof

We divide this theorem into two processes to prove, that is, before (i.e., \(\varvec{s}(t)\not \equiv \varvec{0}\)) and after (i.e., \(\varvec{s}(t)\equiv \varvec{0}\)) sliding mode surface entering steady state. Above all, the first process is proved as follows. We choose the same Lyapunov function candidate (i.e., \(\breve{V}_{1}(t)=V(t)\)) with proof of Theorem 1. Under the conditions (i), (ii) and (iii), based on proof process of the previous theorem, it is easy to obtain

$$\begin{aligned} \dot{\breve{V}}_{1}(t)&\le -\varvec{s}^{T}(t)\varvec{C}\mathrm {sign}(\varvec{s}(t))-\sigma (\Vert \widetilde{\varvec{A}}(t-\tau )\Vert \nonumber \\&\quad +\overline{A}+\Vert \widetilde{\varvec{B}}(t)\Vert +\overline{B}+\sqrt{2\sigma _{1}}\Vert \widetilde{\varvec{d}}(t)\Vert \nonumber \\&\quad +\sqrt{2\sigma _{1}}\overline{d}+\sqrt{2\sigma _{2}}\Vert \widetilde{\varvec{m}}(t)\Vert +\sqrt{2\sigma _{2}}\overline{m})\nonumber \\&\le -c_{\text {min}}\sum \limits _{i=1}^{n+1}|s_{i}(t)|-\sigma (\Vert \widetilde{\varvec{A}}(t-\tau )\Vert \nonumber \\&\quad +\overline{A}+\Vert \widetilde{\varvec{B}}(t)\Vert +\overline{B}+\sqrt{2\sigma _{1}}\Vert \widetilde{\varvec{d}}(t)\Vert \nonumber \\&\quad +\sqrt{2\sigma _{1}}\overline{d}+\sqrt{2\sigma _{2}}\Vert \widetilde{\varvec{m}}(t)\Vert +\sqrt{2\sigma _{2}}\overline{m})\nonumber \\&\le -\sigma \left( \sum \limits _{i=1}^{n+1}|s_{i}(t)|+\Vert \widetilde{\varvec{A}}(t-\tau )\Vert \right. \nonumber \\&\quad +\overline{A}+\Vert \widetilde{\varvec{B}}(t)\Vert +\overline{B}+\sqrt{2\sigma _{1}}\Vert \widetilde{\varvec{d}}(t)\Vert \nonumber \\&\quad \left. +\sqrt{2\sigma _{1}}\overline{d}+\sqrt{2\sigma _{2}}\Vert \widetilde{\varvec{m}}(t)\Vert +\sqrt{2\sigma _{2}}\overline{m}\right) \nonumber \\ \end{aligned}$$
(57)

According to property of the norm, we know that \(\Vert \widetilde{\varvec{A}}(t-\tau )-\varvec{A}(t-\tau )\Vert \le \Vert \widetilde{\varvec{A}}(t-\tau )\Vert +\Vert \varvec{A}(t-\tau )\Vert \le \Vert \widetilde{\varvec{A}}(t-\tau )\Vert +\overline{A}\). Therefore, \(-(\Vert \widetilde{\varvec{A}}(t-\tau )\Vert +\overline{A})\le -(\Vert \widetilde{\varvec{A}}(t-\tau )-\varvec{A}(t-\tau )\Vert )=-\Vert \widehat{\varvec{A}}(t-\tau )\Vert \). Similarly, we can obtain that \(-(\Vert \widetilde{\varvec{B}}(t)\Vert +\overline{B})\le -\Vert \widehat{\varvec{B}}(t)\Vert \), \(-(\Vert \widetilde{\varvec{d}}(t)\Vert +\overline{d})\le -\Vert \widehat{\varvec{d}}(t)\Vert \) and \(-(\Vert \widetilde{\varvec{m}}(t)\Vert +\overline{m})\le -\Vert \widehat{\varvec{m}}(t)\Vert \). Furthermore, in combination with Lemma 2, (57) is turned into

$$\begin{aligned} \dot{\breve{V}}_{1}(t)&\le -\sigma \left( \sum \limits _{i=1}^{n+1}|s_{i}(t)|+\Vert \widehat{\varvec{A}}(t-\tau )\Vert +\Vert \widehat{\varvec{B}}(t)\Vert \right. \nonumber \\&\quad \left. +\sqrt{2\sigma _{1}}\Vert \widehat{\varvec{d}}(t)\Vert +\sqrt{2\sigma _{2}}\Vert \widehat{\varvec{m}}(t)\Vert \right) \nonumber \\&\le -\frac{\sigma }{n} [\varvec{s}^{T}(t)\varvec{s}(t)+\widehat{\varvec{A}}^{T}(t-\tau )\widehat{\varvec{A}}(t-\tau )+\widehat{\varvec{B}}^{T}(t)\widehat{\varvec{B}}(t)\nonumber \\&\quad +2\sigma _{1}\widehat{\varvec{d}}^{T}(t)\widehat{\varvec{d}}(t)+2\sigma _{2}\widehat{\varvec{m}}^{T}(t)\widehat{\varvec{m}}(t)]^{1/2} \end{aligned}$$
(58)

We select \(\sigma _{1}=\mathrm {max}\{\lambda (\varvec{U})\}\) and \(\sigma _{2}=\mathrm {max}\{\lambda (\varvec{V})\}\), where \(\lambda (\cdot )\) represents all the eigenvalues of the matrix. On the basis of (58), one has

$$\begin{aligned} \dot{\breve{V}}_{1}(t)&\le -\frac{\sqrt{2}\sigma }{n} [\varvec{s}^{T}(t)\varvec{P}\varvec{s}(t)+\widehat{\varvec{A}}^{T}(t-\tau )\varvec{Q}\widehat{\varvec{A}}(t-\tau )\nonumber \\&\quad +\widehat{\varvec{B}}^{T}(t)\varvec{R}\widehat{\varvec{B}}(t)+\widehat{\varvec{d}}^{T}(t)\varvec{U}\widehat{\varvec{d}}(t)+\widehat{\varvec{m}}^{T}(t)\varvec{V}\widehat{\varvec{m}}(t)]^{1/2}\nonumber \\&=-\frac{\sqrt{2}\sigma }{n}\sqrt{\breve{V}_{1}(t)} \end{aligned}$$
(59)

In the above, \(\varvec{P}\), \(\varvec{Q}\), \(\varvec{R}\), \(\varvec{U}\) and \(\varvec{V}\) are the same as that in the proof about Theorem 1. Combined with Lemma 2 of [29], the states of the system would move toward sliding mode surface and converge to \(\varvec{s}(t)\equiv \varvec{0}\) in a finite time \(T_{1}\), which is given by

$$\begin{aligned} T_{1}=t_{0}+\frac{\sqrt{2}n}{\sigma }\sqrt{\breve{V}_{1}(t_{0})} \end{aligned}$$
(60)

Obviously, for \(\mu >0\), the first process can be reached within \(T_{1}\). Next, we prove the second process. Since \(\varvec{s}(t)\equiv \varvec{0}\), it is known that \(\dot{\varvec{s}}(t)\equiv \varvec{0}\), and thus, we obtain

$$\begin{aligned} \dot{\varvec{e}}(t)=\varvec{K}\Delta (\mathrm {sign}(\varvec{e}(t)),|\varvec{e}(t)|^{\mu }) \end{aligned}$$
(61)

For the same \(\varvec{P}\) as (59), the Lyapunov function candidate is chosen as \(\breve{V}_{2}(t)=\varvec{e}^{T}(t)\varvec{P}\varvec{e}(t)\), then it can be obtained

$$\begin{aligned} \dot{\breve{V}}_{2}(t)&=\varvec{e}^{T}(t)\dot{\varvec{e}}(t)\nonumber \\&=\sum \limits _{i=1}^{n+1}k_{i}|e_{i}|^{\mu +1}\nonumber \\&\le k_{\text {max}}\left( \frac{\sqrt{2}}{n}\right) ^ {\mu +1}\bigl (\sum \limits _{i=1}^{n+1}\frac{1}{2}e_{i}^{2}\bigr )^{\frac{\mu +1}{2}}\nonumber \\&=k_{\text {max}}\left( \frac{\sqrt{2}}{n}\right) ^ {\mu +1}\left( \breve{V}_{2}(t)\right) ^{\frac{\mu +1}{2}}\nonumber \\ \end{aligned}$$
(62)

where \(k_{\text {max}}=\mathrm {max}\{\lambda (\varvec{K})\}<0\). Through Lemma 2 in [29], if \(\mu \in (0,1)\), the state of the error system can reach the equilibrium point \(\varvec{e}_{0}=\varvec{0}\) in a finite time \(T_{2}\), which is decided by

$$\begin{aligned} T_{2}=T_{1}+\frac{2}{k_{\text {max}}(\mu -1)}\bigl (\frac{n}{\sqrt{2}}\bigr )^{\mu +1}\bigl (\breve{V}_{2}(T_{1})\bigr )^{\frac{1-\mu }{2}} \end{aligned}$$
(63)

Visibly, when \(\mu \in (0,1)\), the drive system and response system can achieve finite-time synchronization within \(T=T_{2}\). When \(\mu \ge 1\), the second process may not be implemented in a finite time, which cannot make sure that the synchronization is a finite-time one, but must be an asymptotic one. To sum up, Theorem 4 is proved completely, which also confirms the rationality of Remark 7. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, RG., Wu, HN. Secure communication on fractional-order chaotic systems via adaptive sliding mode control with teaching–learning–feedback-based optimization. Nonlinear Dyn 95, 1221–1243 (2019). https://doi.org/10.1007/s11071-018-4625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4625-z

Keywords

Navigation