Skip to main content
Log in

Observation of interaction phenomena for two dimensionally reduced nonlinear models

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To study the lump–soliton interaction phenomenon for the (3 + 1)-dimensional nonlinear model with dimensional reduction, interaction solutions have been formulated by combining positive quadratic functions with hyperbolic function in bilinear equations. The collision between lump and soliton has been analyzed and simulated. When the lump is induced by a bounded twin soliton, the rogue wave turns up, which can only be visible at an instant time. Based on the solutions, it is easy to find the amplitude, the place and the arrival time of the rogue waves. The mechanism investigated in this paper may shed some light on the study of rogue waves in oceanography, fluid dynamics and nonlinear optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wazwaz, A.-M., El-Tantawy, S.A.: New (3 + 1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dyn. 87, 2457 (2017)

    Article  MathSciNet  Google Scholar 

  2. Manakov, S.V., Zakharov, V.E., Bordag, L.A., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63, 205 (1977)

    Article  Google Scholar 

  3. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240 (2008)

    Article  Google Scholar 

  4. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539 (1970)

    MATH  Google Scholar 

  5. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  6. Chow, K.W., Lai, W.C., Shek, C.K., Tso, K.: Positon-like solutions of nonlinear evolution equations in (2 + 1) dimensions. Chaos Solitons Fractals 9, 1901 (1998)

    Article  MathSciNet  Google Scholar 

  7. Khatera, A.H., Malfliet, W., Callebautc, D.K., Kamel, E.S.: Travelling wave solutions of some classes of nonlinear evolution equations in (1 + 1) and (2 + 1) dimensions. J. Comput. Appl. Math. 140, 469 (2002)

    Article  MathSciNet  Google Scholar 

  8. Lü, X., Ma, W.X., Zhou, Y., Khalique, C.M.: Rational solutions to an extended Kadomtsev–Petviashvili-like equation with symbolic computation. Comput. Math. Appl. 71, 1560 (2016)

    Article  MathSciNet  Google Scholar 

  9. Lü, X., Ma, W.X., Chen, S.T., Khalique, C.M.: A note on rational solutions to a Hirota–Satsuma-like equation. Appl. Math. Lett. 58, 13 (2016)

    Article  MathSciNet  Google Scholar 

  10. Yin, Y.H., Ma, W.X., Liu, J.G., Lü, X.: Diversity of exact solutions to a (3 + 1)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. (2018). https://doi.org/10.1016/j.camwa.2018.06.020

    Article  MathSciNet  Google Scholar 

  11. Lü, X., Wang, J.P., Lin, F.H., Zhou, X.W.: Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water. Nonlinear Dyn. 91, 1249 (2018)

    Article  Google Scholar 

  12. Gao, L.N., Zi, Y.Y., Ma, W.X., Lü, X.: Bäklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 89, 2233 (2017)

    Article  Google Scholar 

  13. Lü, X., Ma, W.X., Yu, J., Khalique, C.M.: Solitary waves with the Madelung fluid description: a generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 31, 40 (2016)

    Article  MathSciNet  Google Scholar 

  14. Wang, D.S., Yin, Y.B.: Symmetry analysis and reductions of the two-dimensional generalized Benney system via geometric approach. Comput. Math. Appl. 71, 748 (2016)

    Article  MathSciNet  Google Scholar 

  15. Lü, X., Lin, F.H.: Soliton excitations and shape-changing collisions in alphahelical proteins with interspine coupling at higher order. Commun. Nonlinear Sci. Numer. Simul. 32, 241 (2016)

    Article  MathSciNet  Google Scholar 

  16. Lin, F.H., Chen, S.T., Qu, Q.X., Wang, J.P., Zhou, X.W., Lü, X.: Resonant multiple wave solutions to a new (3 + 1)-dimensional generalized Kadomtsev–Petviashvili equation: linear superposition principle. Appl. Math. Lett. 78, 112 (2018)

    Article  MathSciNet  Google Scholar 

  17. Lou, S.Y.: Generalized dromion solutions of the (2 + 1)-dimensional KdV equation. J. Phys. A 28, 7227 (1995)

    Article  MathSciNet  Google Scholar 

  18. Ma, W.X.: Wronskian solutions to integrable equations. Discrete Contin. Dyn. Syst. Suppl. 2009, 506 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975 (2015)

    Article  MathSciNet  Google Scholar 

  20. Manakov, S.V., Zakharov, V.E., Bordag, L.A., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63, 205 (1977)

    Article  Google Scholar 

  21. Johnson, R.S., Thompson, S.: A solution of the inverse scattering problem for the Kadomtsev–Petviashvili equation by the method of separation of variables. Phys. Lett. A 66, 279 (1978)

    Article  MathSciNet  Google Scholar 

  22. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496 (1979)

    Article  MathSciNet  Google Scholar 

  23. Kaup, D.J.: The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction. J. Math. Phys. 22, 1176 (1981)

    Article  MathSciNet  Google Scholar 

  24. Gilson, C.R., Nimmo, J.J.C.: Lump solutions of the BKP equation. Phys. Lett. A 147, 472 (1990)

    Article  MathSciNet  Google Scholar 

  25. Imai, K.: Dromion and lump solutions of the Ishimori-I equation. Prog. Theor. Phys. 98, 1013 (1997)

    Article  Google Scholar 

  26. Fokas, A.S., Pelinovsky, D.E., Sulem, C.: Interaction of lumps with a line soliton for the DSII equation. Physica D 152–153, 189 (2001)

    Article  MathSciNet  Google Scholar 

  27. Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation. Nonlinear Dyn. 86, 523 (2016)

    Article  MathSciNet  Google Scholar 

  28. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217 (2016)

    Article  MathSciNet  Google Scholar 

  29. Yang, J.Y., Ma, W.X.: Abundant interaction solutions of the KP equation. Nonlinear Dyn. 89, 1539 (2017)

    Article  MathSciNet  Google Scholar 

  30. Tang, Y.N., Tao, S.Q., Guan, Q.: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput. Math. Appl. 72, 2334 (2016)

    Article  MathSciNet  Google Scholar 

  31. Jia, M., Lou, S. Y.: A Novel Type of Rogue Waves with Predictability in Nonlinear Physics. arXiv:1710.06604

  32. Lou, S.Y., Lin, J.: Rogue waves in nonintegrable KdV-Type systems. Chin. Phys. Lett. 35, 050202 (2018)

    Article  Google Scholar 

  33. Müller, P., Garrett, C., Osborne, A.: Roguewaves. Oceanography 18, 66 (2005)

    Article  Google Scholar 

  34. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054 (2007)

    Article  Google Scholar 

  35. Yan, Z.Y.: Financial rogue waves. Commun. Theor. Phys. 54, 947 (2010)

    Article  Google Scholar 

  36. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  37. Gao, L.N., Zhao, X.Y., Zi, Y.Y., Yu, J., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput. Math. Appl. 72, 1225 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (2017YFC0820700), the National Natural Science Foundation of China under Grant No. 61602034, the Fundamental Research Funds for the Central Universities of China, the Foundation of Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services and the Open Fund of IPOC (BUPT) under Grant No. IPOC2016B008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Lü.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Appendices

Appendix A

Corresponding to Eqs. (8), we choose the parameters

$$\begin{aligned}&\Bigg \{a_{1}=1,\ a_{2}=0,\ a_{3}=0,\ a_{4}=0,\ a_{5}=0, \nonumber \\&\quad a_{6}=-\,6,\ a_{7}=1,\ a_{8}=0,\ a_{9}=\frac{\sqrt{3}}{6},\ \varepsilon =1, \nonumber \\&\quad k=1,\ k_{1}=3^{-\frac{1}{4}},\ k_{2}=-2\cdot 3^{\frac{1}{4}},\ k_{3}=(\sqrt{2}-1)3^{\frac{1}{4}} \Bigg \}, \end{aligned}$$
(28)

to get the interaction solutions \(u_1\) with \(w_1\) as

$$\begin{aligned}&u_1\nonumber \\&\quad =\frac{4x+2\cdot 3^{-\frac{1}{4}}{\mathrm {sinh}}\left( 3^{-\frac{1}{4}}x-2 \cdot 3^{\frac{1}{4}}y +3^{\frac{1}{4}}\left( \sqrt{2}-1\right) t\right) }{x^2+\left( -\,6y+t\right) ^2+{\mathrm {cosh}}\left( 3^{-\frac{1}{4}}x{-}2\cdot 3^{\frac{1}{4}}y {+}3^{\frac{1}{4}}\left( \sqrt{2}-1\right) t\right) {+}\frac{\sqrt{3}}{6}}, \end{aligned}$$
(29)

and

$$\begin{aligned} w_1&=\frac{2\left[ 2+3^{-\frac{1}{2}}{\mathrm {cosh}}\left( 3^{-\frac{1}{4}}x-2\cdot 3^{\frac{1}{4}}y +3^{\frac{1}{4}}\left( \sqrt{2}-1\right) t\right) \right] }{x^2+\left( -6y+t\right) ^2+{\mathrm {cosh}}\left( 3^{ -\frac{1}{4}}x-2\cdot 3^{\frac{1}{4}}y +3^{\frac{1}{4}}\left( \sqrt{2}-1\right) t\right) +\frac{\sqrt{3}}{6}}\nonumber \\&\quad -\frac{2\left[ 2x+3^{-\frac{1}{4}}{\mathrm {sinh}}\left( 3^{-\frac{1}{4}}x-2\cdot 3^{\frac{1}{4}}y +3^{\frac{1}{4}}\left( \sqrt{2}-1\right) t\right) \right] ^2}{\left[ x^2+\left( -6y+t\right) ^2+{\mathrm {cosh}}\left( 3^{-\frac{1}{4}} x-2\cdot 3^{\frac{1}{4}}y +3^{\frac{1}{4}}\left( \sqrt{2}-1\right) t\right) +\frac{\sqrt{3}}{6}\right] ^2}. \end{aligned}$$
(30)

Corresponding to Eqs. (9), we choose the parameters

$$\begin{aligned}&\Bigg \{a_{1}=2,\ a_{2}=0,\ a_{3}=0,\ a_{4}=0,\ a_{5}=0, \nonumber \\&\quad a_{6}=-15,\ a_{7}=1,\ a_{8}=0,\ a_{9}=\frac{1}{8},\ \varepsilon =1, \nonumber \\&k=1,\ k_{1}=1,\ k_{2}=-2,\ k_{3}=\frac{13}{9} \Bigg \}, \end{aligned}$$
(31)

to get the interaction solutions \(u_2\) with \(w_2\) as

$$\begin{aligned}&u_2=\frac{16x+2{\mathrm {sinh}}(x-2y +\frac{13}{9}t)}{4x^2+(-15y+t)^2+{\mathrm {cosh}}(x-2y +\frac{13}{9}t)+\frac{1}{8}}, \end{aligned}$$
(32)

and

$$\begin{aligned} w_2&=\frac{2\left[ 8+{\mathrm {cosh}}\left( x-2y +\frac{13}{9}t\right) \right] }{4x^2+(-15y+t)^2+{\mathrm {cosh}}\left( x-2y +\frac{13}{9}t\right) +\frac{1}{8}}\nonumber \\&\quad -\frac{2\left[ 8x+{\mathrm {sinh}}\left( x-2y +\frac{13}{9}t\right) \right] ^2}{\left[ 4x^2+(-15y+t)^2+{\mathrm {cosh}}\left( x-2y +\frac{13}{9}t\right) +\frac{1}{8}\right] ^2}. \end{aligned}$$
(33)

Appendix B

Corresponding to the parameters given in Eqs. (14) and (15), we choose the following two special sets of the parameters:

$$\begin{aligned}&\Bigg \{a_{1}=-1,\ a_{2}=2,\ a_{3}=0,\ a_{4}=0,\ a_{5}=1, \nonumber \\&\quad a_{6}=2,\ a_{7}=0,\ a_{8}=0,\ a_{9}=2, \nonumber \\&\quad k=10,\ k_{1}=-\frac{1}{2},\ k_{2}=0,\ k_{3}=-\frac{1}{8} \Bigg \}, \end{aligned}$$
(34)

and

$$\begin{aligned}&\Bigg \{a_{1}=1,\ a_{2}=0,\ a_{3}=0,\ a_{4}=0,\ a_{5}=0, \nonumber \\&\quad a_{6}=2,\ a_{7}=0,\ a_{8}=0,\ a_{9}=1, \nonumber \\&\quad k=3,\ k_{1}=-\frac{1}{2},\ k_{2}=0,\ k_{3}=-\frac{1}{8} \Bigg \}, \end{aligned}$$
(35)

which generate two interaction solutions to the dimensionally reduced Eq. (12), respectively, as

$$\begin{aligned}&u_3=\frac{8x-10\,{\mathrm {sinh}}\left( -\frac{1}{2}x -\frac{1}{8}t\right) }{(-x+2y)^2+(x+2y)^2+10\,{\mathrm {cosh}}\left( -\frac{1}{2}x -\frac{1}{8}t\right) +2}, \end{aligned}$$
(36)

and

$$\begin{aligned}&u_4=\frac{4x-3\,{\mathrm {sinh}}\left( -\frac{1}{2}x -\frac{1}{8}t\right) }{x^2+4y^2+3\,{\mathrm {cosh}}\left( -\frac{1}{2}x -\frac{1}{8}t\right) +1}, \end{aligned}$$
(37)

Associated with Eqs. (36) and (37), the derivative form of the interaction solutions can be obtained with \(w=u_x\), respectively, as

$$\begin{aligned} w_3&=\frac{8+5\,{\mathrm {cosh}}\left( -\frac{1}{2}x -\frac{1}{8}t\right) }{\left( -x+2y\right) ^2+\left( x+2y\right) ^2+10\,{\mathrm {cosh}}\left( -\frac{1}{2}x -\frac{1}{8}t\right) +2}\nonumber \\&\quad -\frac{2\left[ 4x-5\,{\mathrm {sinh}}\left( -\frac{1}{2}x -\frac{1}{8}t\right) \right] ^2}{\left[ \left( -x+2y\right) ^2+\left( x+2y\right) ^2+10\, {\mathrm {cosh}}\left( -\frac{1}{2}x -\frac{1}{8}t\right) +2\right] ^2}, \end{aligned}$$
(38)

and

$$\begin{aligned} w_4&=\frac{4+\frac{3}{2}\,{\mathrm {cosh}}\left( -\frac{1}{2}x -\frac{1}{8}t\right) }{x^2+4y^2+3\,{\mathrm {cosh}}\left( -\frac{1}{2}x -\frac{1}{8}t\right) +1}\nonumber \\&\quad -\frac{2\left[ 2x-\frac{3}{2}\,{\mathrm {sinh}}\left( -\frac{1}{2}x -\frac{1}{8}t\right) \right] ^2}{\left[ x^2+4y^2+3\,{\mathrm {cosh}}\left( -\frac{1}{2}x -\frac{1}{8}t\right) +1\right] ^2}. \end{aligned}$$
(39)

Appendix C

Corresponding to the parameters given in Eqs. (18),  (19) and (20), we choose the following three special sets of the parameters:

$$\begin{aligned}&\Bigg \{a_{1}=0,\ a_{2}=2,\ a_{3}=0,\ a_{4}=0,\ a_{5}=1, \nonumber \\&\quad a_{6}=0,\ a_{7}=0,\ a_{8}=0,\ a_{9}=1, \nonumber \\&\quad k=2,\ k_{1}=0,\ k_{2}=\frac{1}{2},\ k_{3}=0 \Bigg \}, \end{aligned}$$
(40)
$$\begin{aligned}&\Bigg \{a_{1}=1,\ a_{2}=0,\ a_{3}=2,\ a_{4}=2,\ a_{5}=1,\nonumber \\&\quad a_{6}=0,\ a_{7}=-1,\ a_{8}=2,\ a_{9}=1, \nonumber \\&\quad k=2,\ k_{1}=-\frac{1}{2},\ k_{2}=0,\ k_{3}=\frac{1}{2} \Bigg \}, \end{aligned}$$
(41)

and

$$\begin{aligned}&\Bigg \{a_{1}=1,\ a_{2}=-2,\ a_{3}=0,\ a_{4}=0,\ a_{5}=1, \nonumber \\&\quad a_{6}=2,\ a_{7}=0,\ a_{8}=0,\ a_{9}=1, \nonumber \\&\quad k=2,\ k_{1}=0,\ k_{2}=\frac{1}{2},\ k_{3}=0 \Bigg \}, \end{aligned}$$
(42)

to derive the exact solutions in the form of u and w, respectively, as

$$\begin{aligned} u_5&=\frac{4x}{4y^2+x^2+2\,{\mathrm {cosh}}\left( \frac{1}{2}y\right) +1}, \end{aligned}$$
(43)
$$\begin{aligned} w_5&=\frac{4}{4y^2+x^2+2\,{\mathrm {cosh}}\left( \frac{1}{2}y\right) +1}\nonumber \\&\quad -\frac{8\,x^2}{[4y^2+x^2+2\, {\mathrm {cosh}}\left( \frac{1}{2}y\right) +1]^2}, \end{aligned}$$
(44)
$$\begin{aligned} u_6&=\frac{8x+4t-2\,{\mathrm {sinh}}\left( -\frac{1}{2}x +\frac{1}{2}t\right) +16}{\left( x+2t+2\right) ^2+\left( x-t+2\right) ^2+2\,{\mathrm {cosh}}\left( -\frac{1}{2}x +\frac{1}{2}t\right) +1}, \end{aligned}$$
(45)
$$\begin{aligned} w_6&=\frac{8+{\mathrm {cosh}}\left( -\frac{1}{2}x +\frac{1}{2}t\right) }{\left( x+2t+2\right) ^2+\left( x-t+2\right) ^2+2\,{\mathrm {cosh}}\left( -\frac{1}{2}x +\frac{1}{2}t\right) +1}\nonumber \\&\quad -\frac{2\left[ 4x+2t-{\mathrm {sinh}}\left( -\frac{1}{2}x +\frac{1}{2}t\right) +8\right] ^2}{\left[ \left( x+2t+2\right) ^2+\left( x-t+2\right) ^2+2\,{\mathrm {cosh}}\left( -\frac{1}{2}x +\frac{1}{2}t\right) +1\right] ^2}, \end{aligned}$$
(46)

and

$$\begin{aligned} u_7&=\frac{8x}{\left( x-2y\right) ^2+\left( x+2y\right) ^2+2\,{\mathrm {cosh}}\left( \frac{1}{2}y\right) +1}, \end{aligned}$$
(47)
$$\begin{aligned} w_7&=\frac{8}{\left( x-2y\right) ^2+\left( x+2y\right) ^2+2\,{\mathrm {cosh}}\left( \frac{1}{2}y\right) +1}\nonumber \\&\quad -\frac{32x^2}{\left[ \left( x-2y\right) ^2+\left( x+2y\right) ^2+2\,{\mathrm {cosh}}\left( \frac{1}{2}y\right) +1\right] ^2}. \end{aligned}$$
(48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, FH., Wang, JP., Zhou, XW. et al. Observation of interaction phenomena for two dimensionally reduced nonlinear models. Nonlinear Dyn 94, 2643–2654 (2018). https://doi.org/10.1007/s11071-018-4514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4514-5

Keywords

Navigation