Skip to main content
Log in

Asymptotic analysis of passive mitigation of dynamic instability using a nonlinear energy sink network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 15 November 2018

This article has been updated

Abstract

The present work studies a one-DOF nonlinear unstable primary system, which undergoes harmful limit cycle oscillations, coupled to a network of several parallel nonlinear energy sinks (NESs). As usual, in the framework of NES properties exploration and particularly in the context of dynamic instabilities mitigation, four steady-state response regimes are observed. They are classified into two categories depending on whether the NESs mitigate or not the instability and therefore separating harmless situations from harmful situations. An asymptotic analysis shows that the critical manifold of the system can be reduced to a one-dimensional parametric curve evolving in a N-dimensional space. The shape of the critical manifold and the associated stability properties provide an analytical tool to predict the nature of the possible response regimes mentioned above. In particular, the mitigation limit of the NESs, defined as the value of the chosen bifurcation parameter which separates harmful situations from harmless situations, is predicted. Using more restrictive assumptions, i.e., neglecting the nonlinearity of the primary system and assuming N identical NESs, a literal expression of the mitigation limit is obtained. Using a Van de Pol oscillator as a primary system, theoretical results are compared, for validation purposes, to the numerical integration of the system. The comparison shows a good agreement as long as we remain within the limits of use of the asymptotic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

  • 15 November 2018

    Remark In the sequel, the equation numbering follows that of the original paper.

Notes

  1. S is hyperbolic if all the eigenvalues of the Jacobian matrices of the differential system (23) have nonzero real parts.

References

  1. Bellet, R., Cochelin, B., Herzog, P., Mattei, P.O.: Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber. J. Sound Vib. 329, 2768–2791 (2010)

    Article  Google Scholar 

  2. Benoît, E., Callot, J., Diener, F., Diener, M.: Chasse au canard (”duck hunting”). Collect. Math. 32(1–2), 37–119 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Bergeot, B., Bellizzi, S., Cochelin, B.: Analysis of steady-state response regimes of a helicopter ground resonance model including a non-linear energy sink attachment. Int. J. Non Linear Mech. 78, 72–89 (2016). https://doi.org/10.1016/j.ijnonlinmec.2015.10.006

    Article  Google Scholar 

  4. Bergeot, B., Bellizzi, S., Cochelin, B.: Passive suppression of helicopter ground resonance using nonlinear energy sinks attached on the helicopter blades. J. Sound Vib. 392, 41–55 (2017). https://doi.org/10.1016/j.jsv.2016.12.039

    Article  Google Scholar 

  5. Bergeot, B., Berger, S., Bellizzi, S.: Mode coupling instability mitigation in friction systems by means of nonlinear energy sinks : numerical highlighting and local stability analysis. J. Vib. Control (2017). https://doi.org/10.1177/1077546317707101

    Article  MathSciNet  Google Scholar 

  6. Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H., Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 52(2), 211–288 (2012). https://doi.org/10.1137/100791233

    Article  MathSciNet  MATH  Google Scholar 

  7. Domany, E., Gendelman, O.: Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink. J. Sound Vib. 332(21), 5489–5507 (2013). https://doi.org/10.1016/j.jsv.2013.05.001

    Article  Google Scholar 

  8. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 98, 53–98 (1979)

    Article  MathSciNet  Google Scholar 

  9. Gendelman, O., Vakakis, A., Bergman, L., McFarland, D.: Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow. SIAM J. Appl. Math. 70(5), 1655–1677 (2010). https://doi.org/10.1137/090754819

    Article  MathSciNet  MATH  Google Scholar 

  10. Gendelman, O.V.: Targeted energy transfer in systems with external and self-excitation. Proc. Instit. Mech. Eng. Part C J. Mech. Eng. Sci. 225(9), 2007–2043 (2011). https://doi.org/10.1177/0954406211413976

    Article  Google Scholar 

  11. Gendelman, O.V., Bar, T.: Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink. Physica D 239(3–4), 220–229 (2010). https://doi.org/10.1016/j.physd.2009.10.020

    Article  MathSciNet  MATH  Google Scholar 

  12. Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results. J. Sound Vib. 300(3–5), 522–551 (2007). https://doi.org/10.1016/j.jsv.2006.06.074

    Article  Google Scholar 

  13. Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications. Applied Mathematical Sciences, vol. 63. Springer, Berlin (1987)

    MATH  Google Scholar 

  14. Jones, C.: Geometric singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems. Lecture Notes in Mathematics, vol. 1609, pp. 44–118. Springer, Berlin (1995). https://doi.org/10.1007/BFb0095239

    Chapter  Google Scholar 

  15. Kerschen, G., McFarland, D.M., Kowtko, J.J., Lee, Y.S., Bergman, L.A., Vakakis, A.F.: Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. J. Sound Vib. 299(4–5), 822–838 (2007). https://doi.org/10.1016/j.jsv.2006.07.029

    Article  Google Scholar 

  16. Kuehn, C.: Multiple Time Scale Dynamics, Applied Mathematical Sciences, vol. 191, 1st edn. Springer, Berlin (2015)

    MATH  Google Scholar 

  17. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: theory. AIAA J. 45(3), 693–711 (2007). https://doi.org/10.2514/1.24062

    Article  Google Scholar 

  18. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Suppression aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments. AIAA J. 45(3), 2391–2400 (2007). https://doi.org/10.2514/1.24062

    Article  Google Scholar 

  19. Li, T., Gourc, E., Seguy, S., Berlioz, A.: Dynamics of two vibro-impact nonlinear energy sinks in parallel under periodic and transient excitations. Int. J. Non Linear Mech. 90, 100–110 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.01.010

    Article  Google Scholar 

  20. Luongo, A., Zulli, D.: Aeroelastic instability analysis of nes-controlled systems via a mixed multiple scale/harmonic balance method. J. Vib. Control (2013). https://doi.org/10.1177/1077546313480542

    Article  Google Scholar 

  21. Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81(1), 425–435 (2015). https://doi.org/10.1007/s11071-015-2002-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Manevitch, L.: Complex representation of dynamics of coupled nonlinear oscillators. In: Uvarova, L., Arinstein, A., Latyshev, A. (eds.) Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media, pp. 269–300. Springer, Berlin (1999). https://doi.org/10.1007/978-1-4615-4799-0_24

    Chapter  Google Scholar 

  23. Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50(3), 651–677 (2007). https://doi.org/10.1007/s11071-006-9189-7

    Article  MATH  Google Scholar 

  24. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry. Physica D 237(13), 1719–1733 (2008). https://doi.org/10.1016/j.physd.2008.01.019

    Article  MathSciNet  MATH  Google Scholar 

  25. Taghipour, J., Dardel, M.: Steady state dynamics and robustness of a harmonically excited essentially nonlinear oscillator coupled with a two-DOF nonlinear energy sink. Mech. Syst. Signal Process. 62–63, 164–182 (2015). https://doi.org/10.1016/j.ymssp.2015.03.018

    Article  Google Scholar 

  26. Ture Savadkoohi, A., Vaurigaud, B., Lamarque, C.H., Pernot, S.: Targeted energy transfer with parallel nonlinear energy sinks, part II: Theory and experiments. Nonlinear Dyn. 67(1), 37–46 (2012). https://doi.org/10.1007/s11071-011-9955-z

    Article  MathSciNet  MATH  Google Scholar 

  27. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  28. Vaurigaud, B., Ture Savadkoohi, A., Lamarque, C.H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66(4), 763–780 (2011). https://doi.org/10.1007/s11071-011-9949-x

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baptiste Bergeot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Appendices

A Projection of the super-slow dynamics on the critical manifold

Equation (32) is developed into the following form

$$\begin{aligned} \dot{s}&=\epsilon \mathscr {F}\left( s,r_1,\ldots ,r_N,\vartheta _1\,\ldots ,\vartheta _N\right) \end{aligned}$$
(62a)
$$\begin{aligned} \dot{r}_n&=\mathscr {G}_n\left( s,r_1,\ldots ,r_N,\vartheta _1\,\ldots ,\vartheta _N,\epsilon \right) , \text {for}\; n=1,\ldots ,N \end{aligned}$$
(62b)
$$\begin{aligned} \dot{\vartheta }_{n}&=\mathscr {H}_n\left( s,r_1,\ldots ,r_N,\vartheta _1\,\ldots ,\vartheta _N,\epsilon \right) , \text {for}\; n=1,\ldots ,N, \end{aligned}$$
(62c)

where functions \(\mathscr {F}\), \(\mathscr {G}_n\) and \(\mathscr {H}_n\) are deduced from functions f and \(g_n\) in systems of Eqs. (10) and (11) as

$$\begin{aligned} \mathscr {F}&=\text {Re}\left\{ f e^{-j\delta }\right\} \end{aligned}$$
(63a)
$$\begin{aligned} \mathscr {G}_n&=\text {Re}\left\{ g_n e^{-j\theta _n}\right\} \end{aligned}$$
(63b)
$$\begin{aligned} \mathscr {H}_n&=\frac{s \, \text {Im}\left\{ g_n e^{-j\theta _n}\right\} -r_n \, \text {Im}\left\{ f e^{-j\delta }\right\} }{r_n \, s}. \end{aligned}$$
(63c)

From system of Eqs. (62), we obtain the real form of the slow and super-slow subsystems (13) and (14) as

$$\begin{aligned} \dot{s}&=0 \end{aligned}$$
(64a)
$$\begin{aligned} \dot{r}_n&=\mathscr {G}_n\left( s,r_1,\ldots ,r_N,\vartheta _1\,\ldots ,\vartheta _N,0\right) , \text {for}\; n=1,\ldots ,N \end{aligned}$$
(64b)
$$\begin{aligned} \dot{\vartheta }_{n}&=\mathscr {H}_n\left( s,r_1,\ldots ,r_N,\vartheta _1\,\ldots ,\vartheta _N,0\right) , \text {for}\; n=1,\ldots ,N, \end{aligned}$$
(64c)

and

$$\begin{aligned} s'&=\mathscr {F}\left( s,r_1,\ldots ,r_N,\vartheta _1\,\ldots ,\vartheta _N\right) \end{aligned}$$
(65a)
$$\begin{aligned} 0&=\mathscr {G}_n\left( s,r_1,\ldots ,r_N,\vartheta _1\,\ldots ,\vartheta _N,0\right) , \text {for}\; n=1,\ldots ,N \end{aligned}$$
(65b)
$$\begin{aligned} 0&=\mathscr {H}_n\left( s,r_1,\ldots ,r_N,\vartheta _1\,\ldots ,\vartheta _N,0\right) , \text {for}\; n=1,\ldots ,N, \end{aligned}$$
(65c)

respectively.

We assume that fixed points of (62) exist only at the super-slow timescale and they are therefore fixed points of (65). Of course, the CM can be also obtained solving Eqs. (65b) and (65c). Then, substituting system of Eq. (19) with \(n=1\) (any \(n\in [1,\,N]\) can be chosen) into (65a) , we obtain

$$\begin{aligned}&\left( \sqrt{H_1\left( r_1 \right) }\right) '=\frac{1}{2 \sqrt{H_1\left( r_1 \right) }}\frac{\mathrm{d} H_1\left( r_1 \right) }{\mathrm{d}r_1}r_1'\nonumber \\&\quad =\mathscr {F}\left( \sqrt{H_1\left( r_1 \right) },r_1,\ldots ,r_N,\right. \nonumber \\&\qquad \left. -\,\arg \left( F_1(r_1)\right) ,\ldots ,-\arg \left( F_N(r_N)\right) \right) , \end{aligned}$$
(66)

which can be reduced to

$$\begin{aligned} \frac{\mathrm{d }H_1\left( r_1 \right) }{\mathrm{d }r_1}r_1'= f_{r_1}\left( r_1,\ldots ,r_N\right) , \end{aligned}$$
(67)

where \(f_{r_1}=2 \sqrt{H_1\left( r_1 \right) } \mathscr {F}\). In reality, \(f_{r_1}\left( r_1,\ldots ,r_N\right) \) is a single-valued function because all variables \(r_n\) (with \(n\in [1,\,N]\)) are linked to each other through Eq. (22) (any \(n\in [1,\,N]\) can be chosen as master component, we choose \(r_1\)).

B Proof of Result 4.1

Because N identical NESs are assumed, the function \(H_n(x)\) is now denoted H(x). Considering also a linear primary system (\(\tilde{f}_{\mathrm{NL}} = 0\)), system of Eq. (37) becomes

$$\begin{aligned} \rho H(r_1)-\sum _{k= 1}^{N} r_k^2 \mu&=0 \end{aligned}$$
(68a)
$$\begin{aligned} H(r_n) - H(r_1)&= 0, \quad \text {for}\; n = 2,\ldots ,N. \end{aligned}$$
(68b)

Equation (68b) is a third-order polynomial equation with respect to \(r_n^2\) having the three following roots as a function of \(r_1\)

$$\begin{aligned} r_n^2&= f_1(r_1^2)=r_1^2\ \end{aligned}$$
(69a)
$$\begin{aligned} r_n^2&= f_2(r_1^2)\nonumber \\&=-\frac{r_1^2}{2}+\frac{8 a+\sqrt{3 \alpha r_1^2 \left( 16 a-9 \alpha r_1^2\right) -64 \mu ^2}}{6 \alpha } \end{aligned}$$
(69b)
$$\begin{aligned} r_n^2&= f_3(r_1^2)\nonumber \\&=-\frac{r_1^2}{2}+\frac{8 a-\sqrt{3 \alpha r_1^2 \left( 16 a-9 \alpha r_1^2\right) -64 \mu ^2}}{6 \alpha }. \end{aligned}$$
(69c)

The functions \(f_2(r_1^2)>f_3(r_1^2)\). If \(\mu >a/\sqrt{3}\), \(r_n^2 = f_1(r_1^2)=r_1^2\) is the only real solution.

Using system of Eqs. (69), (68a) is written as follows

$$\begin{aligned} H(r_1)=\frac{\mu }{\rho }\left( r_1^2+\sum _{k=2}^{N}g_n(r_1^2) \right) , \end{aligned}$$
(70)

where \(g_n(r_1^2)\) can be, for each term of the sum, \(f_1(r_1^2)\), \(f_2(r_1^2)\) or \(f_3(r_1^2)\).

If \(\forall n \in [2,N], g_n(r_1^2)=f_1(r_1^2)=r_1^2\), Eq. (70) becomes

$$\begin{aligned} H(r_1)=\frac{\mu }{\rho } N r_1^2. \end{aligned}$$
(71)

Ignoring the trivial solution, Eq. (71) is reduced to a second-order polynomial equation with respect to \(r_1^2\) with the following solutions

$$\begin{aligned} r_{1,1}^{*2} =\frac{4 \left( a \rho -\sqrt{\mu \rho \left( a^2 N-\mu \rho \right) }\right) }{3 \alpha \rho }, \end{aligned}$$
(72)

and

$$\begin{aligned} r_{1,2}^{*2} =\frac{4 \left( a \rho +\sqrt{\mu \rho \left( a^2 N-\mu \rho \right) }\right) }{3 \alpha \rho }, \end{aligned}$$
(73)

which are real if \(\rho <\frac{a^2 N}{\mu }\). In this case, \(r_{1,1}^{*2}<r_{1,2}^{*2}\).

Considering first the case \(\mu >a/\sqrt{3}\), \(r_n^2 = f_1(r_1^2)\) is the only real solution, \( r_{1,1}^{*2}\) and \( r_{1,2}^{*2}\) are therefore the only solutions given Eq. (48) with \(w=r_{1,2}^*\).

We consider now the case for which \(\mu <a/\sqrt{3}\). Solving \(f_1(r_1^2)=f_2(r_1^2)\) (to find the intersection between the functions \(f_1\) and \(f_2\)) and \(\mathrm{d}f_2(x)/\mathrm{d}x=0\) (to find the maximum of \(f_2\)) gives the same value of \(r_1^2\) as

$$\begin{aligned} r_{1}^{\star 2}=\frac{4 \left( 2 a+\sqrt{a^2-3 \mu ^2}\right) }{9 \alpha }, \end{aligned}$$
(74)

which corresponds also to one of the solutions of \(H'\left( r_1\right) =0\) (see Eq. (25b)), i.e., \(r_{1}^{\star }=r^m\) (where \(r^m\) is \(r_n^m\) in the case of identical NESs).

The difference between \(r_{1,2}^{*2}\) and \(r_{1}^{\star 2}\) is

$$\begin{aligned} r_{1,2}^{*2}-r_{1}^{\star 2}=\frac{4 \left( a \rho +3 \sqrt{\mu \rho \left( a^2 N-\mu \rho \right) }-\rho \sqrt{a^2-3 \mu ^2}\right) }{9 \alpha \rho }, \nonumber \\ \end{aligned}$$
(75)

which is a real positive number until \(\rho =\frac{a^2 N}{\mu }\). Therefore, for \(r_1^2>r_{1}^{\star 2}\), \(f_1(r_1^2)>f_2(r_1^2)\) and the right-hand side of Eq. (70) is bounded as follows

$$\begin{aligned}&R_l= \frac{\mu }{\rho }\left( r_1^2+ (N-1) f_2(r_1^2)\right) \nonumber \\&\quad<R_c =\frac{\mu }{\rho }\left( r_1^2+\sum _{k=2}^{N}g_n(r_1^2)\right) < R_r=\frac{\mu }{\rho }N r_1^2. \end{aligned}$$
(76)

Let \(\mathscr {R}_l\), \(\mathscr {R}_c\) and \(\mathscr {R}_r\) be the sets of fixed points \(\mathbf r^*\), the solutions of \(H(r_1)=R_l\), \(H(r_1)=R_c\) and \(H(r_1)=R_r\), respectively. Consequently, because for \(r_1^2>r_{1}^{\star 2}\), \(H(r_1)\) in an increasing function and because of Eq. (76), the following inequalities hold

$$\begin{aligned} \forall n \in [1,\,N], \quad \max _{\mathbf{r^*} \in \mathscr {R}_l} r^*_{n}< \max _{\mathbf{r^*} \in \mathscr {R}_c} r^*_{n}< \max _{\mathbf{r^*} \in \mathscr {R}_r} r^*_{n}, \end{aligned}$$
(77)

with

$$\begin{aligned} \max _{\mathbf{r^*} \in \mathscr {R}_r} r^*_{n}=r_{1,2}^{*}, \end{aligned}$$
(78)

giving also Eq. (48) with \(w=r_{1,2}^*\).

To finish the proof, one must show that \(\mathbf{r^*}= \left[ r_1=w,\ldots ,r_N=w \right] \) is an unstable fixed point on a stable part of S. To this end, the derivative with respect to \(r_1\) of the function

$$\begin{aligned} f(r_1)=2 \frac{\rho H(r_1)-\mu N r_1^2}{\frac{dH_1(r_1)}{\mathrm{d}r_1}}, \end{aligned}$$
(79)

defined by Eq. (39), is computed as

$$\begin{aligned} \frac{\mathrm{d}f}{\mathrm{d} r_1} ({r_1})= & {} 2\left( \frac{\rho \frac{\mathrm{d}H_1(r_1)}{\mathrm{d}r_1}-\mu N \, r_1}{\frac{dH_1(r_1)}{\mathrm{d}r_1}}\right. \nonumber \\&\left. -\frac{d^2H_1(r_1)}{\mathrm{d}r_1^2}\frac{\rho H(r_1)-\mu N \, r_1^2}{\left( \frac{\mathrm{d}H_1(r_1)}{\mathrm{d}r_1}\right) ^2}\right) . \end{aligned}$$
(80)

By definition, the term \(\rho H(r_1)-\mu N \, r_1^2=0\) if \(r_1=r_{1,2}^{*2}\) (see Eq. (71)). Moreover, because \(r_{1,2}^{*2}>r_{1}^{\star 2}=r^m\)

$$\begin{aligned} \left. \frac{\mathrm{d}H_1(r_1)}{\mathrm{d}r_1}\right| _{r_1=\sqrt{r_{1,2}^{*2}}}>0. \end{aligned}$$
(81)

Therefore, the sign of Eq. (80) is given by the sign of \(\rho H'(r_1)-2 \mu N \, r_1\). One can be shown that \(\rho \frac{dH_1(r_1)}{\mathrm{d}r_1}-2 \mu N \, r_1\) is a real-valued function if \(r_1>\kappa \) with

$$\begin{aligned} \kappa =\frac{2}{3} \sqrt{\frac{2 a+\sqrt{\frac{a^2 (3 \mu N+\rho )}{\rho }-3 \mu ^2}}{\alpha }}, \end{aligned}$$
(82)

and that \(r_{1,2}^{*}>\kappa \) until \(\rho =\frac{a^2 N}{\mu }\). Consequently, using Result 3.2 (\(\frac{\mathrm{d}f}{\mathrm{d} r_1} ({r_1})>0\)), \(r_{1,2}^{*}\) is an unstable fixed point and Result 4.1 is demonstrated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergeot, B., Bellizzi, S. Asymptotic analysis of passive mitigation of dynamic instability using a nonlinear energy sink network. Nonlinear Dyn 94, 1501–1522 (2018). https://doi.org/10.1007/s11071-018-4438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4438-0

Keywords

Navigation