Skip to main content
Log in

Instability and stochastic analyses of a pad-on-disc frictional system in moving interactions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A pad-on-disc frictional model, a rotating disc under acted by a pad, is established. The moving interaction between the coupled pad and disc is estimated using the Stribeck-type friction model, and the partial differential equation of the disc vibration is calculated using the finite difference method with moving load simulation procedure. Bifurcation diagram and phase portraits of the pad motion with 3-DOFs reveal that as the rotating speed is below a critical value, instability happens and stick–slip vibration is resulted for the pad. Then, eigenvalue analysis is applied to evaluate stability of the pad considering stochastic variation of frictional coefficients and contact effect. Probability distribution diagrams are presented to show that the higher initial displacement of preload or friction coefficient can bring occurrence of more probably instability in uncertain state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Crowther, A.R., Singh, R.: Analytical investigation of stick–slip motions in coupled brake-driveline systems. Nonlinear Dyn. 50, 463–481 (2007)

    Article  MATH  Google Scholar 

  2. Giannini, O., Massi, F.: Characterization of the high-frequency squeal on a laboratory brake setup. J. Sound Vib. 310, 394–408 (2008)

    Article  Google Scholar 

  3. Hegde, S., Suresh, B.S.: Study of friction induced stick–slip phenomenon in a minimal disc brake model. J. Mech. Eng. Autom. 5, 100–106 (2015)

    Google Scholar 

  4. Thomsen, J.J., Fidlin, A.: Analytical approach to estimate amplitude of stick–slip oscillations. J. Theor. Appl. Mech. 38, 389–403 (2011)

    MATH  Google Scholar 

  5. Balaram, D.K.B.: Analytical approximations for stick–slip amplitudes and frequency of Duffing oscillator. J. Comput. Nonlinear Dyn. 12, 044501 (2017)

    Article  Google Scholar 

  6. Abdo, J., Abouelsoud, A.A.: Analytical approach to estimate amplitude of stick–slip oscillations. J. Theor. Appl. Mech. 49, 971–986 (2011)

    Google Scholar 

  7. Thomsen, J.J., Fidlin, A.: Analytical approximations for stick–slip vibration amplitudes. Int. J. Non-Linear Mech. 38, 389–403 (2003)

    Article  MATH  Google Scholar 

  8. Galvanetto, U.: Some discontinuous bifurcations in a two-block stick–slip system. J. Sound Vib. 248, 653–669 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, Q., Tang, J., Chen, S., Xiong, X.: Dynamic analysis of chatter in a vehicle braking system with two degrees of freedom involving dry friction. Mech. Sci. Technol. Aerosp. Eng. 30, 937–946 (2011)

    Google Scholar 

  10. Beloiu, D.M., Ibrahim, R.A.: Analytical and experimental investigations of disc brake noise using the frequency-time domain. Struct. Control Health 13, 277–300 (2006)

    Article  Google Scholar 

  11. Nayfeh, A.H., Jilani, A., Manzione, P.: Transverse vibrations of a centrally clamped rotating circular disk. Nonlinear Dyn. 26, 163–178 (2001)

    Article  MATH  Google Scholar 

  12. Li, Z., Ouyang, H., Guan, Z.: Friction-induced vibration of an elastic disc and a moving slider with separation and reattachment. Nonlinear Dyn. 87, 1045–1067 (2016)

    Article  Google Scholar 

  13. Ouyang, H., Mottershead, J.E., Li, W.: A moving-load model for disc-brake stability analysis. J. Vib. Acoust. 125, 53–58 (2003)

    Article  Google Scholar 

  14. Wayou, A.N.Y., Tchoukuegno, R., Woafo, P.: Non-linear dynamics of an elastic beam under moving loads. J. Sound Vib. 273, 1101–1108 (2004)

    Article  Google Scholar 

  15. Pesterev, A.V., Bergman, L.A.: An improved series expansion of the solution to the moving oscillator problem. J. Vib. Acoust. 122, 54–61 (2000)

    Article  Google Scholar 

  16. Chen, L.Q., Wu, J., Zu, J.W.: Asymptotic nonlinear behaviors in transverse vibration of an axially accelerating viscoelastic string. Nonlinear Dyn. 35, 347–360 (2004)

    Article  MATH  Google Scholar 

  17. Massi, F., Baillet, L., Giannini, O., Sestieri, A.: Brake squeal: linear and nonlinear numerical approaches. Mech. Syst. Signal Process. 21, 2374–2393 (2007)

    Article  Google Scholar 

  18. Soobbarayen, K., Sinou, J.J., Besset, S.: Numerical study of friction-induced instability and acoustic radiation—effect of ramp loading on the squeal propensity for a simplified brake model. J. Sound Vib. 333, 5475–5493 (2014)

    Article  Google Scholar 

  19. Cao, Q., Ouyang, H., Friswell, M.I., Mottershead, J.E.: Linear eigenvalue analysis of the disc-brake squeal problem. Int. J. Numer. Methods Eng. 61, 1546–1563 (2004)

    Article  MATH  Google Scholar 

  20. Lü, H., Yu, D.J.: Stability analysis and improvement of uncertain disk brake systems with random and interval parameters for squeal reduction. J. Vib. Acoust. 137, 051003 (2015)

    Article  Google Scholar 

  21. Nobari, A., Ouyang, H.J., Bannister, P.: Uncertainty quantification of squeal instability via surrogate modelling. Mech. Syst. Signal Process. 60–61, 887–908 (2015)

    Article  Google Scholar 

  22. Oberst, S., Lai, J.C.S.: Statistical analysis of brake squeal noise. J. Sound Vib. 330, 2978–2994 (2011)

    Article  Google Scholar 

  23. Oberst, S., Lai, J.C.S.: Pad-mode-induced instantaneous mode instability for simple models of brake systems. Mech. Syst. Signal Process. 62–63, 490–505 (2015)

    Article  Google Scholar 

  24. Lü, H., Yu, D.J.: Brake squeal reduction of vehicle disc brake system with interval parameters by uncertain optimization. J. Sound Vib. 333, 7313–7325 (2014)

  25. Lü, H., Shangguan, W.B., Yu, D.J.: An imprecise probability approach for squeal instability analysis based on evidence theory. J. Sound Vib. 387, 96–113 (2017)

    Article  Google Scholar 

  26. Nechak, L., Gillot, F., Besset, S., Sinou, J.J.: Sensitivity analysis and Kriging based models for robust stability analysis of brake systems. Mech. Res. Commun. 69, 136–145 (2015)

  27. Oberst, S., Lai, J.C.S.: Chaos in brake squeal noise. J. Sound Vib. 330, 955–975 (2011)

    Article  Google Scholar 

  28. Hetzler, H., Schwarzer, D., Seemann, W.: Analytical investigation of steady-state stability and Hopf-bifurcations occurring in sliding friction oscillators with application to low-frequency disc brake noise. Commun. Nonlinear Sci. Numer. Simul. 12, 83–99 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, G.X., Zhou, Z.R.: Correlation of a negative friction-velocity slope with squeal generation under reciprocating sliding conditions. Wear 255, 376–384 (2003)

    Article  Google Scholar 

  30. Ding, Q., Cooper, J.E., Leung, A.Y.T.: Hopf bifurcation analysis of a rotor/seal system. J. Sound Vib. 252, 817–833 (2002)

    Article  Google Scholar 

  31. Zhao, Y., Ding, Q.: Dynamic analysis of dry frictional disc brake system based on the rigid-flexible coupled model. Int. J. Appl. Mech. 7, 1550044 (2015)

    Article  Google Scholar 

  32. Ouyang, H., Mottershead, J.E., Cartmell, M.P., Brookfield, D.J.: Friction-induced vibration of an elastic slider on a vibrating disc. Int. J. Mech. Sci. 41, 325–336 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China through the Grants (11272228, 51575378 and 11332008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Ding.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, X., Ding, Q. Instability and stochastic analyses of a pad-on-disc frictional system in moving interactions. Nonlinear Dyn 93, 1619–1634 (2018). https://doi.org/10.1007/s11071-018-4280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4280-4

Keywords

Navigation