Skip to main content
Log in

A numerical method for KdV equation using collocation and radial basis functions

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recently, there has been an increasing interest in the study of initial boundary value problems for Korteweg–de Vries (KdV) equations. In this paper, we propose a numerical scheme to solve the third-order nonlinear KdV equation using collocation points and approximating the solution using multiquadric (MQ) radial basis function (RBF). The scheme works in a similar fashion as finite-difference methods. Numerical examples are given to confirm the good accuracy of the presented scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, H., Yan, J.: A local discontinuous Galerkin method for the Kortewegde Vries equation with boundary effect. J. Comput. Phys. 215(1), 197–218 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Kansa, E.J.: Multiquadrics – a scattered data approximation scheme with applications to computational fluid dynamics – I. Comput. Math. Appl. 19, 127–145 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Zerroukat, M., Power, H., Chen, C.S.: A numerical method for heat transfer problem using collocation and radial basis functions. Int. J. Numer. Methods Eng. 42, 1263–1278 (1992)

    Article  Google Scholar 

  4. Wazwaz, A.M.: Two reliable methods for solving variants of the KdV equation with compact and noncompact structures. Chaos Solitons Fractals 28, 457–462 (2006)

    Google Scholar 

  5. Das, G., Sarma, J.: A new mathematical approach for finding the solitary waves in dusty plasma. Phys. Plasmas 6, 4394–4397 (1999)

    Article  MathSciNet  Google Scholar 

  6. Osborne, A.: The inverse scattering transform: Tools for the nonlinear fourier analysis and filtering of ocean surface waves. Chaos Solitons Fractals 5, 2623–2637 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ostrovsky, L., Stepanyants, Y.A.: Do internal solitons exist in the ocean? Rev. Geophys. 27(3), 293–310 (1989)

    Google Scholar 

  8. Ludu, A., Draayer, J.P.: Nonlinear modes of liquid drops as solitary waves. Phys. Rev. Lett. 80, 2125–2128 (1998)

    Article  Google Scholar 

  9. Reatto, L., Galli, D.: What is a ROTON? Int. J. Mod. Phys. B 13, 607–616 (1999)

    Article  Google Scholar 

  10. Turitsyn, S., Aceves, A., Jones, C., Zharnitsky, V.: Average dynamics of the optical soliton in communication lines with dispersion management: Analytical results. Phys. Rev. E 58, R48–R51 (1998)

    Article  Google Scholar 

  11. Coffey, M.W.: Nonlinear dynamics of votices in ultraclean type-II superconductors: Integrable wave equations in cylindrical geometry. Phys. Rev. B 54, 1279–1285 (1996)

    Article  Google Scholar 

  12. Singh, K., Gupta, R.K.: Lie symmetries and exact solutions of a new generalized Hirota–Satsuma coupled KdV system with variable coefficients. Int. J. Eng. Sci. 44(3–4), 241–255 (2006)

    Article  MathSciNet  Google Scholar 

  13. Hereman, W., Banerjee, P.P., Korpel, A., Assnto, J., Van Immerzeele, A., Meerpoel, A.: Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method. J. Phys. A 607–628 (1986)

  14. Lei, Y., Fajianj, Z., Yinghai, W.: The homogenous balance method, Lax pair, Hirota transformation and a general fifth-order KdV equation. Chaos Solitons Fractals 13, 337–340 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Coley, A., Levi, D., Milson, R., Rogers, C.: Backlund and Darboux transformations, the geometry of solitons. AARMS-CRM workshop, Halifax, Canada, June 4–9, 1999. CRM Proceedings and Lecture Notes. 29. Providence, RI. American Mathematical Society (2001)

  16. Hirota, R.: Exact solution of the Korteweg–de Vries equation for multiple collision of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  Google Scholar 

  17. Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992)

    Article  MathSciNet  Google Scholar 

  18. Yan, C.T.: New explicit solitary wave solutions and periodic wave solutions for Whitham–Broer–Kaup equation in shallow water. Phys. Lett. A 224, 77–84 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yan, Z.Y., Zhang, H.Q.: Symbolic computation and new families of exact soliton like solutions to the integrable Broer–Kaup (BK) equations in ($2+1$)-dimensional spaces. J. Phys. A 34, 1785–1792 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang, M.L.: Exact solutions for a compound KdV–Burgers equation. Phys. Lett. A 213(5–6), 279–287 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yan, Z.Y., Zhang, H.Q.: A simple transformation for nonlinear waves. Phys. Lett. A 285, 355–362 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving Korteweg–de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  MATH  Google Scholar 

  23. Guo, B.Y., Shen, J.: On spectral approximations using modified Legendre rational functions: Application to the Korteweg–de Vries equation on the half line (Special Issue). Indiana Univ. Math. J. 50, 181–204 (2001)

    MATH  MathSciNet  Google Scholar 

  24. Huang, W.Z., Sloan, D.M.: The pseudospectral method for third-order differential equations. SIAM J. Numer. Anal. 29(6), 1626–1647 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ma, H.P., Sun, W.W.: A Legendre–Petrov–Galerkin and Chebyshev collocation method for third-order differential equations. SIAM J. Numer. Anal. 38(5), 1425–1438 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ma, H.P., Sun, W.W.: Optimal error estimates of the Legendre–Petrov–Galerkin method for the Korteweg–de Vries equation. SIAM J. Numer. Anal. 39(4), 1380–1394 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Refik Bahadir, A.: Exponential finite-difference method applied to Korteweg–de Vries for small times. Appl. Math. Comput. 160(3), 675–682 (2005)

    MATH  MathSciNet  Google Scholar 

  28. Kansa, E.J.: Multiquadrics – A scattered data approximation scheme with applications to computational fluid dynamics – II. Comput. Math. Appl. 19, 147–161 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 176, 1905–1915 (1971)

    Article  Google Scholar 

  30. Franke, R.: Scattered data interpolation: Test of some methods. Math. Comput. 38, 181–200 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hon, Y.C., Mao, X.Z.: An efficient numerical scheme for Burgers’ equation. Appl. Math. Comput. 95(1), 37–50 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hon, Y.C., Cheung, K.F., Mao, X.Z., Kansa, E.J.: Multiquadric solution for shallow water equations. ASCE J. Hydraul. Eng. 125(5), 524–533 (1999)

    Article  Google Scholar 

  33. Hon, Y.C., Mao, X.Z.: A radial basis function method for solving options pricing model. Financ. Eng. 8(1), 31–49 (1999)

    Google Scholar 

  34. Marcozzi, M., Choi, S., Chen, C.S.: On the use of boundary conditions for variational formulations arising in financial mathematics. Appl. Math. Comput. 124, 197–214 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis functions. In: Surface Fitting and Multiresolution Methods, Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.), pp. 131–138. Vanderbilt University Press, Nashville, TN (1997)

  36. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Madych, W.R., Nelson, S.A.: Multivariate interpolation and conditionally positive definite functions II. Math. Comput. 54(189), 211–230 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  38. Madych, W.R., Nelson, S.A.: Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J. Approx. Theory 70, 94–114 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Franke, C., Schaback, R.: Convergence orders of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8(4), 381–399 (1997)

    Article  MathSciNet  Google Scholar 

  40. Franke, C., Schaback, R.: Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput. 93(1), 73–82 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. Hon, Y.C., Wu, Z.: Additive Schwarz domain decomposition with radial basis approximation. Int. J. Appl. Math. 4(1), 599–606 (2000)

    MathSciNet  Google Scholar 

  42. Carlson, R.E., Foley, T.A.: The parameter R2 in multiquadric interpolation. Comput. Math. Appl. 21, 29–42 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  43. Tarwater, A.E.: A parameter study of Hardy’s multiquadric method for scattered data interpolation, Lawrence Livermore National Laboratory, Technical Report UCRL-54670 (1985)

  44. Irk, D., Dag, I., Saka, B.: A small time solution for the Kortewegde Vries equation using spline approximation. Appl. Math. Comput. 173(2), 834–846 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Dehghan, M.: Finite difference procedueres for solving a problem arising in modeling and design of certain optoecletronic devices. Math. Comput. Simul. 71, 16–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  46. Chantrasirivan, S.: Cartesian grid method using radial basis functions for solving Poisson, Helmholtz, and diffusion-convection equations. Eng. Anal. Boundary Elements 28, 1417–1425 (2004)

    Article  Google Scholar 

  47. Liu, G.R., Gu, Y.T.: Boundary meshfree methods based on the boundary point methods. Eng. Anal. Boundary Elements 28, 475–487 (2004)

    Article  MATH  Google Scholar 

  48. Dehghan, M., Tatari, M.: Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions, Mathematical and Computer Modelling 44 (2006) 1160–1168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehghan, M., Shokri, A. A numerical method for KdV equation using collocation and radial basis functions. Nonlinear Dyn 50, 111–120 (2007). https://doi.org/10.1007/s11071-006-9146-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9146-5

Keywords

Navigation