Skip to main content
Log in

Topology optimization of a flexible multibody system with variable-length bodies described by ALE–ANCF

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recent years have witnessed the application of topology optimization to flexible multibody systems (FMBS) so as to enhance their dynamic performances. In this study, an explicit topology optimization approach is proposed for an FMBS with variable-length bodies via the moving morphable components (MMC). Using the arbitrary Lagrangian–Eulerian (ALE) formulation, the thin plate elements of the absolute nodal coordinate formulation (ANCF) are used to describe the platelike bodies with variable length. For the thin plate element of ALE–ANCF, the elastic force and additional inertial force, as well as their Jacobians, are analytically deduced. In order to account for the variable design domain, the sets of equivalent static loads are reanalyzed by introducing the actual and virtual design domains so as to transform the topology optimization problem of dynamic response into a static one. Finally, the novel MMC-based topology optimization method is employed to solve the corresponding static topology optimization problem by explicitly evolving the shapes and orientations of a set of structural components. The effect of the minimum feature size on the optimization of an FMBS is studied. Three numerical examples are presented to validate the accuracy of the thin plate element of ALE–ANCF and the efficiency of the proposed topology optimization approach, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Yang, C.J., Hong, D.F., Ren, G.X., Zhao, Z.H.: Cable installation simulation by using a multibody dynamic model. Multibody Sys.Dyn. 30(4), 433–447 (2013)

    Article  MathSciNet  Google Scholar 

  2. Hong, D.F., Tang, J.L., Ren, G.X.: Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation. J. Fluids Struct. 27(8), 1137–1148 (2011)

    Article  Google Scholar 

  3. Tang, J.L., Ren, G.X., Zhu, W.D., Ren, H.: Dynamics of variable-length tethers with application to tethered satellite deployment. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3411–3424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Escalona, J.L.: An arbitrary Lagrangian–Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics. Mech. Mach. Theory 112, 1–21 (2017)

    Article  Google Scholar 

  5. Du, J.L., Cui, C.Z., Bao, H., Qiu, Y.Y.: Dynamic analysis of cable-driven parallel manipulators using a variable length finite element. J. Comput. Nonlinear Dyn. 10(1), 011013 (2015)

    Article  Google Scholar 

  6. Sakamoto, H., Miyazaki, Y., Mori, O.: Transient dynamic analysis of gossamer appendage deployment using nonlinear finite element method. J. Spacecr. Rockets 48(5), 881–890 (2011)

    Article  Google Scholar 

  7. Zhao, J., Tian, Q., Hu, H.Y.: Deployment dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method. Acta. Mech. Sin. 29(1), 132–142 (2013)

    Article  Google Scholar 

  8. https://www.orbitalatk.com/space-systems/space-components/deployables/default.aspx

  9. Wang, J., Qi, Z.H., Wang, G.: Hybrid modeling for dynamic analysis of cable-pulley systems with time-varying length cable and its application. J. Sound Vib. 406, 277–294 (2017)

    Article  Google Scholar 

  10. Longva, V., Sævik, S.: A Lagrangian–Eulerian formulation for reeling analysis of history-dependent multilayered beams. Comput. Struct. 146, 44–58 (2015)

    Article  Google Scholar 

  11. Pechstein, A., Gerstmayr, J.: A Lagrange–Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 30(3), 343–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gross, D., Messner, D.: The able deployable articulated mast-enabling technology for the shuttle radar topography mission. In: 33rd Aerospace Mechanisms Symposium, Pasadena, California, May 19–21 (1999)

  13. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sigmund, O., Maute, K.: Topology optimization approaches: a comparative review. Struct. Multidiscip. Optim. 48(6), 1031–1055 (2013)

    Article  MathSciNet  Google Scholar 

  15. Sun, J.L., Tian, Q., Hu, H.Y.: Topology optimization based on level set for a flexible multibody system modeled via ANCF. Struct. Multidiscip. Optim. 55, 1159–1177 (2017)

    Article  MathSciNet  Google Scholar 

  16. Tromme, E., Tortorelli, D., Brüls, O., Duysinx, P.: Structural optimization of multibody system components described using level set techniques. Struct. Multidiscip. Optim. 52(5), 959–971 (2015)

    Article  MathSciNet  Google Scholar 

  17. Held, A., Nowakowski, C., Moghadasi, A., Seifried, R., Eberhard, P.: On the influence of model reduction techniques in topology optimization of flexible multibody systems using the floating frame of reference approach. Struct. Multidiscip. Optim. 53(1), 67–80 (2016)

    Article  MathSciNet  Google Scholar 

  18. Moghadasi, A., Held, A., Seifried, R.: Modeling of revolute joints in topology optimization of flexible multibody systems. J. Comput. Nonlinear Dyn. 12(1), 011015 (2017)

    Article  Google Scholar 

  19. Sun, J.L., Tian, Q., Hu, H.Y.: Topology optimization of a three-dimensional flexible multibody system via moving morphable components. J. Comput. Nonlinear Dyn. 13(2), 021010 (2018)

    Article  Google Scholar 

  20. Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Report. No. MBS96-1-UIC, University of Illinois at Chicago (1996)

  21. Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions: the plane case. Part I and II. J. Appl. Mech. 53(4), 849–863 (1986)

    Article  MATH  Google Scholar 

  22. Ding, J.Y., Wallin, M., Wei, C., Recuero, A.M., Shabana, A.A.: Use of independent rotation field in the large displacement analysis of beams. Nonlinear Dyn. 76(3), 1829–1843 (2014)

    Article  MathSciNet  Google Scholar 

  23. Hayashi, H., Takehara, S., Terumichi, Y.: Numerical approach for flexible body motion with large displacement and time-varying length. In: The 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, BEXCO, Busan, Korea, June 30–July 3 (2014)

  24. Terumichi, Y., Kaczmarczyk, S., Sogabe, K.: Numerical approach in the analysis of flexible body motion with time-varying length and large displacement using multiple time scales. In: The 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland, May 25–27 (2010)

  25. Hong, D.F., Ren, G.X.: A modeling of sliding joint on one-dimensional flexible medium. Multibody Syst. Dyn. 26(1), 91–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hyldahl, P., Mikkola, A., Balling, O.: A thin plate element based on the combined arbitrary Lagrange–Euler and absolute nodal coordinate formulations. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 227(3), 211–219 (2013)

    Google Scholar 

  27. Sun, J.L., Tian, Q., Hu, H.Y.: Structural optimization of flexible components in a flexible multibody system modeled via ANCF. Mech. Mach. Theory 104, 59–80 (2016)

    Article  Google Scholar 

  28. Kang, B.S., Park, G.J., Arora, J.S.: Optimization of flexible multibody dynamic systems using the equivalent static load method. AIAA J. 43(4), 846–852 (2005)

    Article  Google Scholar 

  29. Hong, E.P., You, B.J., Kim, C.H., Park, G.J.: Optimization of flexible components of multibody systems via equivalent static loads. Struct. Multidiscip. Optim. 40(1–6), 549–562 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tromme, E., Sonneville, V., Brüls, O., Duysinx, P.: On the equivalent static load method for flexible multibody systems described with a nonlinear finite element formalism. Int. J. Numer. Methods Eng. 108(6), 646–664 (2016)

    Article  MathSciNet  Google Scholar 

  31. Tromme, E., Sonneville, V., Guest, J.K., Brüls, O.: System-wise equivalent static loads for the design of flexible mechanisms. Comput. Methods Appl. Mech. Eng. 329, 312–331 (2018)

    Article  MathSciNet  Google Scholar 

  32. Tromme, E., Brüls, O., Duysinx, P.: Weakly and fully coupled methods for structural optimization of flexible mechanisms. Multibody Syst. Dyn. 38(4), 391–417 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, W.S., Li, D., Yuan, J., Song, J.F., Guo, X.: A new three-dimensional topology optimization method based on moving morphable components (MMCs). Comput. Mech. 69(4), 647–665 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, W.S., Yuan, J., Zhang, J., Guo, X.: A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct. Multidiscip. Optim. 53(6), 1243–1260 (2016)

    Article  MathSciNet  Google Scholar 

  35. Guo, X., Zhang, W.S., Zhang, J., Yuan, J.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)

    Article  MathSciNet  Google Scholar 

  36. Zhang, W.S., Li, D., Zhang, J., Guo, X.: Minimum length scale control in structural topology optimization based on the moving morphable components (MMC) approach. Comput. Methods Appl. Mech. Eng. 311, 327–355 (2016)

    Article  MathSciNet  Google Scholar 

  37. Guo, X., Zhang, W.S., Zhong, W.L.: Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. J. Appl. Mech. 81(8), 081009 (2014)

    Article  Google Scholar 

  38. Zhao, J., Tian, Q., Hu, H.Y.: Modal analysis of a rotating thin plate via absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 6(4), 041013 (2011)

    Article  Google Scholar 

  39. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 219(4), 345–355 (2005)

    Google Scholar 

  40. Sanborn, G.G., Choi, J., Choi, J.H.: Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements. Multibody Syst. Dyn. 26(2), 191–211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Garcia-Vallejo, D., Mayo, J., Escalona, J.L.: Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dyn. 35(4), 313–329 (2004)

    Article  MATH  Google Scholar 

  42. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tian, Q., Zhang, Y.Q., Chen, L.P., Yang, J.Z.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2010)

    Article  MATH  Google Scholar 

  44. Tian, Q., Lou, J., Mikkola, A.: A new elastohydrodynamic lubricated spherical joint model for rigid-flexible multibody dynamics. Mech. Mach. Theory 107, 210–228 (2017)

    Article  Google Scholar 

  45. Tian, Q., Sun, Y.L., Liu, C., Hu, H.Y., Flores, P.: Elastohydrodynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput. Struct. 114–115, 106–120 (2013)

    Article  Google Scholar 

  46. Yang, Z.J., Chen, X., Kelly, R.: A topological optimization approach for structural design of a high-speed low-load mechanism using the equivalent static loads method. Int. J. Numer. Methods Eng. 89(5), 584–598 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Luo, Z., Yang, J.Z., Chen, L.P., Zhang, Y.Q., Abdel-Malek, K.: A new hybrid fuzzy-goal programming scheme for multi-objective topological optimization of static and dynamic structures under multiple loading conditions. Struct. Multidiscip. Optim. 31(1), 26–39 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24(2), 359–373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  49. Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10, 17–43 (2003)

    Article  MATH  Google Scholar 

  50. Luo, K., Liu, C., Tian, Q., Hu, H.: Nonlinear static and dynamic analysis of hyper-elastic thin shells via the absolute nodal coordinate formulation. Nonlinear Dyn. 85, 949–971 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Dmitrochenko, O., Mikkola, A.: Two simple triangular plate elements based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 3(4), 041012 (2008)

    Article  Google Scholar 

  52. Olshevskiy, A., Dmitrochenko, O., Dai, M.D., Kim, C.: The simplest 3-, 6- and 8-noded fully-parameterized ANCF plate elements using only transverse slopes. Multibody Syst. Dyn. 34(1), 23–51 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Olshevskiy, A., Dmitrochenko, O., Lee, S., Kim, C.: A triangular plate element 2343 using second-order absolute-nodal-coordinate slopes: numerical computation of shape functions. Nonlinear Dyn. 74(3), 769–781 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. García-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50(1–2), 249–264 (2007)

    Article  MATH  Google Scholar 

  55. Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)

    Article  MATH  Google Scholar 

  56. De Jalón, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems the Real-Time Challenge. Springer, New York (1994)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 11290151 and 11472042. It was also supported in part by Postgraduate Research & Practice Innovation Program of Jiangsu Province under Grants KYCX17_0226 and by China Scholarship Council under Grants 201706830011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Hu.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Appendix

Appendix

First of all, the strain tensor \({\varvec{\upvarepsilon }}\) as shown in Eq. (7) can be rewritten as

$$\begin{aligned} {\varvec{\upvarepsilon }}=\left[ {{\begin{array}{l} {{\left( {\mathbf{r}_{,m}^{\mathrm{T}} \mathbf{r}_{,m} -1} \right) }/2} \\ {{\left( {\mathbf{r}_{,n}^{\mathrm{T}} \mathbf{r}_{,n} -1} \right) }/2} \\ {\mathbf{r}_{,m}^{\mathrm{T}} \mathbf{r}_{,n} } \\ \end{array} }} \right] =\left[ {{\begin{array}{l} {{\left( {\left( \mathbf{A} \right) _{ij} q_i q_j -1} \right) }/2} \\ {{\left( {\left( \mathbf{B} \right) _{ij} q_i q_j -1} \right) }/2} \\ {\left( \mathbf{C} \right) _{ij} q_i q_j } \\ \end{array} }} \right] , \nonumber \\ \end{aligned}$$
(A.1)

where the subscripts \(i,j=1,2,\ldots ,36\), and \(\mathbf{A}=\mathbf{N}_{e,m}^{\mathrm{T}} \mathbf{N}_{e,m} \), \(\mathbf{B}=\mathbf{N}_{e,n}^{\mathrm{T}} \mathbf{N}_{e,n} \), \(\mathbf{C}=\mathbf{N}_{e,m}^{\mathrm{T}} \mathbf{N}_{e,n} \).

Then, the invariant matrices \(\left( {\mathbf{K}_1 } \right) _{ikab} \), \(\left( {\mathbf{K}_2 } \right) _{ikab} \), \(\left( {\mathbf{K}_3 } \right) _{ikab} \), \(\left( {\mathbf{K}_4 } \right) _{ijkab} \), \(\left( {\mathbf{K}_5 } \right) _{ijkab} \), \(\left( {\mathbf{K}_6 } \right) _{ijkab} \), \(\left( {\mathbf{G}_1 } \right) _{ik} \), \(\left( {\mathbf{G}_2 } \right) _{ik} \), \(\left( {\mathbf{G}_3 } \right) _{ijk} \) and \(\left( {\mathbf{G}_4 } \right) _{ijk} \) in Eq. (11) can be computed as follows

$$\begin{aligned}&\left( {\mathbf{K}_1 } \right) _{ikab} =\int _{V_0 } {\mathbf{E}_{11}^\varepsilon \left( {\left( \mathbf{A} \right) _{ik} \left( \mathbf{A} \right) _{ab} +\left( \mathbf{B} \right) _{ik} \left( \mathbf{B} \right) _{ab} } \right) \hbox {d}V} ,\;\;\;\;\;~~\nonumber \\&\left( {\mathbf{K}_2 } \right) _{ikab} =\int _{V_0 } {\mathbf{E}_{12}^\varepsilon \left( {\left( \mathbf{B} \right) _{ik} \left( \mathbf{A} \right) _{ab} +\left( \mathbf{A} \right) _{ik} \left( \mathbf{B} \right) _{ab} } \right) \hbox {d}V} ,\;\;\;\;~~~~\nonumber \\&\left( {\mathbf{K}_3 } \right) _{ikab} =\int _{V_0 } {2\mathbf{E}_{33}^\varepsilon \left( {\left( \mathbf{C} \right) _{ik} \left( \mathbf{C} \right) _{ab} +\left( \mathbf{C} \right) _{ki} \left( \mathbf{C} \right) _{ab} } \right) \hbox {d}V} ,\;\;\;~~~~\nonumber \\&\left( {\mathbf{K}_4 } \right) _{ijkab} =\int _{V_0 } {\mathbf{E}_{11}^\varepsilon \left( {\left( \mathbf{A} \right) _{ij,q_k } \left( \mathbf{A} \right) _{ab} +\left( \mathbf{B} \right) _{ij,q_k } \left( \mathbf{B} \right) _{ab} } \right) \hbox {d}V} ,\nonumber \\&\left( {\mathbf{K}_5 } \right) _{ijkab} =\int _{V_0 } {\mathbf{E}_{12}^\varepsilon \left( {\left( \mathbf{B} \right) _{ij,q_k } \left( \mathbf{A} \right) _{ab} +\left( \mathbf{A} \right) _{ij,q_k } \left( \mathbf{B} \right) _{ab} } \right) \hbox {d}V} , \nonumber \\&\left( {\mathbf{K}_6 } \right) _{ijkab} =\int _{V_0 } {4\mathbf{E}_{33}^\varepsilon \left( \mathbf{C} \right) _{ij,q_k } \left( \mathbf{C} \right) _{ab} \hbox {d}V} ,\nonumber \\&\left( {\mathbf{G}_1 } \right) _{ik} =\int _{V_0 } {\mathbf{E}_{11}^\varepsilon \left( {\left( \mathbf{A} \right) _{ik} +\left( \mathbf{B} \right) _{ik} } \right) \hbox {d}V},\nonumber \\&\left( {\mathbf{G}_2 } \right) _{ik} =\int _{V_0 } {\mathbf{E}_{12}^\varepsilon \left( {\left( \mathbf{A} \right) _{ik} +\left( \mathbf{B} \right) _{ik} } \right) \hbox {d}V},\nonumber \\&\left( {\mathbf{G}_3 } \right) _{ijk} =\int _{V_0 } {\mathbf{E}_{11}^\varepsilon \left( {\left( \mathbf{A} \right) _{ij,q_k } +\left( \mathbf{B} \right) _{ij,q_k } } \right) \hbox {d}V},\nonumber \\&\left( {\mathbf{G}_4 } \right) _{ijk} =\int _{V_0 } {\mathbf{E}_{12}^\varepsilon \left( {\left( \mathbf{A} \right) _{ij,q_k } +\left( \mathbf{B} \right) _{ij,q_k } } \right) \hbox {d}V}, \end{aligned}$$
(A.2)

where the subscripts \(i,\;j,\;a,\;b=1,\;2,\;\ldots ,\;36\) and \(\mathbf{E}_{11}^\varepsilon \), \(\mathbf{E}_{12}^\varepsilon \), \(\mathbf{E}_{33}^\varepsilon \) are the entries of the elastic coefficient matrix \(\mathbf{E}^{\varepsilon }\) in Eq. (8). From Eq. (A.2), it can be observed that \(\mathbf{K}_1 \) and \(\mathbf{K}_2 \) are symmetric about i, k and a, b, respectively. \(\mathbf{K}_4 \) and \(\mathbf{K}_5 \) are symmetric about i, j and a, b, respectively. \(\mathbf{K}_3 \), \(\mathbf{G}_1 \) and \(\mathbf{G}_2 \) are symmetric about i, k. \(\mathbf{K}_6 \), \(\mathbf{G}_3 \) and \(\mathbf{G}_4 \) are symmetrical about i, j.

In Eqs. (13) and (15), the expressions of \(\left( {\mathbf{K}_1 } \right) _{ikab,q_l } \), \(\left( {\mathbf{K}_2 } \right) _{ikab,q_l } \), \(\left( {\mathbf{K}_3 } \right) _{ikab,q_l } \), \(\left( {\mathbf{K}_4 } \right) _{ijkab,q_l } \), \(\left( {\mathbf{K}_5 } \right) _{ijkab,q_l } \), \(\left( {\mathbf{K}_6 } \right) _{ijkab,q_l } \), \(\left( {\mathbf{G}_1 } \right) _{ik,q_l } \), \(\left( {\mathbf{G}_2 } \right) _{ik,q_l } \), \(\left( {\mathbf{G}_3 } \right) _{ijk,q_l } \) and \(\left( {\mathbf{G}_4 } \right) _{ijk,q_l } \) are listed as follows

$$\begin{aligned}&\left( {\mathbf{K}_1 } \right) _{ikab,q_l } =\int _{V_0 } {\mathbf{E}_{11}^\varepsilon \left( {\left( \mathbf{A} \right) _{ik,q_l } \left( \mathbf{A} \right) _{ab} +\left( \mathbf{A} \right) _{ik} \left( \mathbf{A} \right) _{ab,q_l } } \right) \hbox {d}V} \nonumber \\&\quad +\int _{V_0 } {\mathbf{E}_{11}^\varepsilon \left( {\left( \mathbf{B} \right) _{ik,q_l } \left( \mathbf{B} \right) _{ab} +\left( \mathbf{B} \right) _{ik} \left( \mathbf{B} \right) _{ab,q_l } } \right) \hbox {d}V,} \;\;\;\;~~~\;~~ \nonumber \\&\left( {\mathbf{K}_2 } \right) _{ikab,q_l } =\int _{V_0 } {\mathbf{E}_{12}^\varepsilon \left( {\left( \mathbf{B} \right) _{ik,q_l } \left( \mathbf{A} \right) _{ab} +\left( \mathbf{B} \right) _{ik} \left( \mathbf{A} \right) _{ab,q_l } } \right) \hbox {d}V} \nonumber \\&\quad +\int _{V_0 } {\mathbf{E}_{12}^\varepsilon \left( {\left( \mathbf{A} \right) _{ik,q_l } \left( \mathbf{B} \right) _{ab} +\left( \mathbf{A} \right) _{ik} \left( \mathbf{B} \right) _{ab,q_l } } \right) \hbox {d}V,} \;\;\;\;~~~~ \nonumber \\&\left( {\mathbf{K}_3 } \right) _{ikab,q_l } =\int _{V_0 } {2\mathbf{E}_{33}^\varepsilon \left( {\left( \mathbf{C} \right) _{ik,q_l } \left( \mathbf{C} \right) _{ab} +\left( \mathbf{C} \right) _{ik} \left( \mathbf{C} \right) _{ab,q_l } } \right) \hbox {d}V} \nonumber \\&\quad +\int _{V_0 } {2\mathbf{E}_{33}^\varepsilon \left( {\left( \mathbf{C} \right) _{ki,q_l } \left( \mathbf{C} \right) _{ab} +\left( \mathbf{C} \right) _{ki} \left( \mathbf{C} \right) _{ab,q_l } } \right) \hbox {d}V,} \;\;\;~~~~~ \nonumber \\&\left( {\mathbf{K}_4 } \right) _{ijkab,q_l } =\int _{V_0 } {\mathbf{E}_{11}^\varepsilon \left( {\left( \mathbf{A} \right) _{ij,q_k q_l } \left( \mathbf{A} \right) _{ab} +\left( \mathbf{A} \right) _{ij,q_k } \left( \mathbf{A} \right) _{ab,q_l } } \right) \hbox {d}V} \nonumber \\&\quad +\int _{V_0 } {\mathbf{E}_{11}^\varepsilon \left( {\left( \mathbf{B} \right) _{ij,q_k q_l } \left( \mathbf{B} \right) _{ab} +\left( \mathbf{B} \right) _{ij,q_k } \left( \mathbf{B} \right) _{ab,q_l } } \right) \hbox {d}V} ,\;~~ \nonumber \\&\left( {\mathbf{K}_5 } \right) _{ijkab,q_l } =\int _{V_0 } {\mathbf{E}_{12}^\varepsilon \left( {\left( \mathbf{B} \right) _{ij,q_k q_l } \left( \mathbf{A} \right) _{ab} +\left( \mathbf{B} \right) _{ij,q_k } \left( \mathbf{A} \right) _{ab,q_l } } \right) \hbox {d}V} \nonumber \\&\quad +\int _{V_0 } {\mathbf{E}_{12}^\varepsilon \left( {\left( \mathbf{A} \right) _{ij,q_k q_l } \left( \mathbf{B} \right) _{ab} +\left( \mathbf{A} \right) _{ij,q_k } \left( \mathbf{B} \right) _{ab,q_l } } \right) \hbox {d}V} ,~~ \nonumber \\&\left( {\mathbf{K}_6 } \right) _{ijkab,q_l } =\int _{V_0 } {4\mathbf{E}_{33}^\varepsilon \left( {\left( \mathbf{C} \right) _{ij,q_k q_l } \left( \mathbf{C} \right) _{ab} +\left( \mathbf{C} \right) _{ij,q_k } \left( \mathbf{C} \right) _{ab,q_l } } \right) \hbox {d}V} ,\nonumber \\&\left( {\mathbf{G}_1 } \right) _{ik,q_l } =\int _{V_0 } {\mathbf{E}_{11}^\varepsilon \left( {\left( \mathbf{A} \right) _{ik,q_l } +\left( \mathbf{B} \right) _{ik,q_l } } \right) \hbox {d}V}, \nonumber \\&\left( {\mathbf{G}_2 } \right) _{ik,q_l } =\int _{V_0 } {\mathbf{E}_{12}^\varepsilon \left( {\left( \mathbf{A} \right) _{ik,q_l } +\left( \mathbf{B} \right) _{ik,q_l } } \right) \hbox {d}V} ,\nonumber \\&\left( {\mathbf{G}_3 } \right) _{ijk,q_l } =\int _{V_0 } {\mathbf{E}_{11}^\varepsilon \left( {\left( \mathbf{A} \right) _{ij,q_k q_l } +\left( \mathbf{B} \right) _{ij,q_k q_l } } \right) \hbox {d}V} ,\nonumber \\&\left( {\mathbf{G}_4 } \right) _{ijk,q_l } =\int _{V_0 } {\mathbf{E}_{12}^\varepsilon \left( {\left( \mathbf{A} \right) _{ij,q_k q_l } +\left( \mathbf{B} \right) _{ij,q_k q_l } } \right) \hbox {d}V} , \end{aligned}$$
(A.3)

where the subscripts \(i,\;j,\;a,\;b=1,\;2,\;\ldots ,\;36\).

Besides, the expressions of \(\left( {\mathbf{H}_1 } \right) _{ka} \), \(\left( {\mathbf{H}_2 } \right) _{ka} , {\ldots }, \left( {\mathbf{H}_{14} } \right) _{ka} \) and \(\left( {\mathbf{H}_{15} } \right) _{kba} \), \(\left( {\mathbf{H}_{16} } \right) _{kba} , {\ldots }, \left( {\mathbf{H}_{28} } \right) _{kba} \) in Eqs. (17) and (18) are listed as follows

$$\begin{aligned} \left( {\mathbf{H}_1 } \right) _{ka}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_1 } } \right) _{ja} \hbox {d}V} ,~~~~\;~~\nonumber \\ \left( {\mathbf{H}_2 } \right) _{ka}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,n_1 } } \right) _{ja} \hbox {d}V} ,~~~~\;~~\nonumber \\ \left( {\mathbf{H}_3 } \right) _{ka}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_2 } } \right) _{ja} \hbox {d}V} ,~~~\;~~\nonumber \\ \left( {\mathbf{H}_4 } \right) _{ka}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,n_2 } } \right) _{ja} \hbox {d}V} ,~~~~\;~~\nonumber \\ \left( {\mathbf{H}_5 } \right) _{ka}= & {} \rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_1 m_1 } } \right) _{ja} \hbox {d}V} ~,~~~~~~~~\nonumber \\ \left( {\mathbf{H}_6 } \right) _{ka}= & {} \rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,n_1 n_1 } } \right) _{ja} \hbox {d}V} ,~~~~~~~~~~~\nonumber \\ \left( {\mathbf{H}_7 } \right) _{ka}= & {} \rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_2 m_2 } } \right) _{ja} \hbox {d}V} ,~~~~~~~~\nonumber \\ \left( {\mathbf{H}_8 } \right) _{ka}= & {} \rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,n_2 n_2 } } \right) _{ja} \hbox {d}V} ,~~~~~~~~~~\nonumber \\ \left( {\mathbf{H}_9 } \right) _{ka}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_1 n_1 } } \right) _{ja} \hbox {d}V} ,~~~~\nonumber \\ \left( {\mathbf{H}_{10} } \right) _{ka}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_1 m_2 } } \right) _{ja} \hbox {d}V} ,\nonumber \\ \left( {\mathbf{H}_{11} } \right) _{ka}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_1 n_2 } } \right) _{ja} \hbox {d}V} ,~~\nonumber \\ \left( {\mathbf{H}_{12} } \right) _{ka}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,n_1 m_2 } } \right) _{ja} \hbox {d}V} ,~\nonumber \\ \left( {\mathbf{H}_{13} } \right) _{ka}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,n_1 n_2 } } \right) _{ja} \hbox {d}V} ,~~\nonumber \\ \left( {\mathbf{H}_{14} } \right) _{ka}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_2 n_2 } } \right) _{ja} \hbox {d}V} , \end{aligned}$$
(A.4)

and

$$\begin{aligned} \left( {\mathbf{H}_{15} } \right) _{kba}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 } } \right) _{ja} \hbox {d}V} ,~~~~~~~~\nonumber \\ \left( {\mathbf{H}_{16} } \right) _{kba}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,n_1 } } \right) _{ja} \hbox {d}V} ,~~~~~~~~~\nonumber \\ \left( {\mathbf{H}_{17} } \right) _{kba}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_2 } } \right) _{ja} \hbox {d}V} ,~~~~~~~~\nonumber \\ \left( {\mathbf{H}_{18} } \right) _{kba}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,n_2 } } \right) _{ja} \hbox {d}V} ,~~~~~~~~~\nonumber \\ \left( {\mathbf{H}_{19} } \right) _{kba}= & {} \rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 m_1 } } \right) _{ja} \hbox {d}V} ,\;~~~~\nonumber \\ \left( {\mathbf{H}_{20} } \right) _{kba}= & {} \rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,n_1 n_1 } } \right) _{ja} \hbox {d}V} ,\;~~~~~~\nonumber \\ \left( {\mathbf{H}_{21} } \right) _{kba}= & {} \rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_2 m_2 } } \right) _{ja} \hbox {d}V} ,~\;~~\nonumber \\ \left( {\mathbf{H}_{22} } \right) _{kba}= & {} \rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,n_2 n_2 } } \right) _{ja} \hbox {d}V} ,~~~~~~~~\nonumber \\ \left( {\mathbf{H}_{23} } \right) _{kba}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 n_1 } } \right) _{ja} \hbox {d}V} ,~~\nonumber \\ \left( {\mathbf{H}_{24} } \right) _{kba}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 m_2 } } \right) _{ja} \hbox {d}V} ,\nonumber \\ \left( {\mathbf{H}_{25} } \right) _{kba}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 n_2 } } \right) _{ja} \hbox {d}V~} ,\nonumber \\ \left( {\mathbf{H}_{26} } \right) _{kba}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,n_1 m_2 } } \right) _{ja} \hbox {d}V} ,~\nonumber \\ \left( {\mathbf{H}_{27} } \right) _{kba}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,n_1 n_2 } } \right) _{ja} \hbox {d}V} ,~~\nonumber \\ \left( {\mathbf{H}_{28} } \right) _{kba}= & {} 2\rho \int _{V_0 } {\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_2 n_2 } } \right) _{ja} \hbox {d}V} . \end{aligned}$$
(A.5)

In Eqs. (A.4) and (A.5), the subscripts \(a,\;b=1,\;2,\;\ldots ,\;36\) and \(j=1,2,3\).

Likewise, the expressions of \(\left( {\mathbf{H}_1 } \right) _{ka,q_l } \), \(\left( {\mathbf{H}_2 } \right) _{ka,q_l } \), ..., \(\left( {\mathbf{H}_{14} } \right) _{ka,q_l } \) and \(\left( {\mathbf{H}_{15} } \right) _{kba,q_l } \), \(\left( {\mathbf{H}_{16} } \right) _{kba,q_l } \), ..., \(\left( {\mathbf{H}_{28} } \right) _{kba,q_l } \) in Eqs. (19)–(22) are listed as follows

$$\begin{aligned} \left( {\mathbf{H}_1 } \right) _{ka,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,m_1 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_1 q_l } } \right) _{ja} \right] \hbox {d}V ,\;\;~~~~~~~~~~~~ \nonumber \\ \left( {\mathbf{H}_2 } \right) _{ka,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,n_1 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,n_1 q_l } } \right) _{ja} \right] \hbox {d}V ,\;\;~~~~~~~~~~~~~ \nonumber \\ \left( {\mathbf{H}_3 } \right) _{ka,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,m_2 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_2 q_l } } \right) _{ja} \right] \hbox {d}V ,\;\;~~~~~~~~~~ \nonumber \\ \left( {\mathbf{H}_4 } \right) _{ka,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,n_2 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,n_2 q_l } } \right) _{ja} \right] \hbox {d}V ,\;\;~~~~~~~~~~~ \nonumber \\ \left( {\mathbf{H}_5 } \right) _{ka,q_l }= & {} \rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,m_1 m_1 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_1 m_1 q_l } } \right) _{ja} \right] \hbox {d}V ,\;\;~~~ \nonumber \\ \left( {\mathbf{H}_6 } \right) _{ka,q_l }= & {} \rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,n_1 n_1 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,n_1 n_1 q_l } } \right) _{ja} \right] \hbox {d}V ,\;\;~~~~~~~~ \nonumber \\ \left( {\mathbf{H}_7 } \right) _{ka,q_l }= & {} \rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,m_2 m_2 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_2 m_2 q_l } } \right) _{ja} \right] \hbox {d}V ,\;~~~~\nonumber \\ \left( {\mathbf{H}_8 } \right) _{ka,q_l }= & {} \rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,n_2 n_2 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,n_2 n_2 q_l } } \right) _{ja} \right] \hbox {d}V ,\;\;~~~~ \nonumber \\ \left( {\mathbf{H}_9 } \right) _{ka,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,m_1 n_1 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_1 n_1 q_l } } \right) _{ja} \right] \hbox {d}V ,\;~~~ \nonumber \\ \left( {\mathbf{H}_{10} } \right) _{ka,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,m_1 m_2 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_1 m_2 q_l } } \right) _{ja} \right] \hbox {d}V , \nonumber \\ \left( {\mathbf{H}_{11} } \right) _{ka,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,m_1 n_2 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_1 n_2 q_l } } \right) _{ja} \right] \hbox {d}V ,~~ \nonumber \\ \left( {\mathbf{H}_{12} } \right) _{ka,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,n_1 m_2 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,n_1 m_2 q_l } } \right) _{ja} \right] \hbox {d}V ,~~ \nonumber \\ \left( {\mathbf{H}_{13} } \right) _{ka,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,n_1 n_2 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,n_1 n_2 q_l } } \right) _{ja} \right] \hbox {d}V ,~~~~ \nonumber \\ \left( {\mathbf{H}_{14} } \right) _{ka,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_l } } \right) _{jk} \left( {\mathbf{N}_{e,m_2 n_2 } } \right) _{ja} \right. \nonumber \\&\left. {+} \left( {\mathbf{N}_e } \right) _{jk} \left( {\mathbf{N}_{e,m_2 n_2 q_l } } \right) _{ja} \right] \hbox {d}V , \end{aligned}$$
(A.6)

and

$$\begin{aligned} \left( {\mathbf{H}_{15} } \right) _{kba,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 q_l } } \right) _{ja} \right] \hbox {d}V ,\;\;\;~~~~~~ \nonumber \\ \left( {\mathbf{H}_{16} } \right) _{kba,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,n_1 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,n_1 q_l } } \right) _{ja} \right] \hbox {d}V ,\;\;\;\;~~~~~ \nonumber \\ \left( {\mathbf{H}_{17} } \right) _{kba,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,m_2 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_2 q_l } } \right) _{ja} \right] \hbox {d}V ,\;\;~~~~~~~~ \nonumber \\ \left( {\mathbf{H}_{18} } \right) _{kba,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,n_2 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,n_2 q_l } } \right) _{ja} \right] \hbox {d}V ,\;\;\;~~~~~~~ \nonumber \\ \left( {\mathbf{H}_{19} } \right) _{kba,q_l }= & {} \rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 m_1 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 m_1 q_l } } \right) _{ja} \right] \hbox {d}V ,\;~~~~~ \nonumber \\ \left( {\mathbf{H}_{20} } \right) _{kba,q_l }= & {} \rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,n_1 n_1 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,n_1 n_1 q_l } } \right) _{ja} \right] \hbox {d}V ,\nonumber \\ \left( {\mathbf{H}_{21} } \right) _{kba,q_l }= & {} \rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,m_2 m_2 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_2 m_2 q_l } } \right) _{ja} \right] \hbox {d}V ,\;\nonumber \\ \left( {\mathbf{H}_{22} } \right) _{kba,q_l }= & {} \rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,n_2 n_2 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,n_2 n_2 q_l } } \right) _{ja} \right] \hbox {d}V ,\;\;~~~\nonumber \\ \left( {\mathbf{H}_{23} } \right) _{kba,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 n_1 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 n_1 q_l } } \right) _{ja} \right] \hbox {d}V ,~~~~~ \nonumber \\ \left( {\mathbf{H}_{24} } \right) _{kba,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 m_2 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 m_2 q_l } } \right) _{ja} \right] \hbox {d}V , \nonumber \\ \left( {\mathbf{H}_{25} } \right) _{kba,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 n_2 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_1 n_2 q_l } } \right) _{ja} \right] \hbox {d}V ,\nonumber \\ \left( {\mathbf{H}_{26} } \right) _{kba,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,n_1 m_2 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,n_1 m_2 q_l } } \right) _{ja} \right] \hbox {d}V ,\nonumber \\ \left( {\mathbf{H}_{27} } \right) _{kba,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,n_1 n_2 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,n_1 n_2 q_l } } \right) _{ja} \right] \hbox {d}V ,\nonumber \\ \left( {\mathbf{H}_{28} } \right) _{kba,q_l }= & {} 2\rho \int _{V_0 } \left[ \left( {\mathbf{N}_{e,q_k q_l } } \right) _{jb} \left( {\mathbf{N}_{e,m_2 n_2 } } \right) _{ja} \right. \nonumber \\&\left. {+}\left( {\mathbf{N}_{e,q_k } } \right) _{jb} \left( {\mathbf{N}_{e,m_2 n_2 q_l } } \right) _{ja} \right] \hbox {d}V . \end{aligned}$$
(A.7)

In Eqs. (A.6) and (A.7), the subscripts \(a,\;b=1,\;2,\;\ldots ,\;36\) and \(j=1,2,3\).

The matrices in Eqs. (A.2)–(A.7) are all invariant and can be computed and stored with sparse matrix technique in the preprocessing procedure to greatly improve the computation efficiency.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Tian, Q., Hu, H. et al. Topology optimization of a flexible multibody system with variable-length bodies described by ALE–ANCF. Nonlinear Dyn 93, 413–441 (2018). https://doi.org/10.1007/s11071-018-4201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4201-6

Keywords

Navigation