Skip to main content
Log in

Intermittency in pitch-plunge aeroelastic systems explained through stochastic bifurcations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Aeroelastic systems with hardening nonlinearity exhibit supercritical Hopf bifurcation when the flow velocity exceeds a critical velocity leading to self-sustaining large amplitude limit cycle oscillations known as flutter. This study investigates the effects of irregular fluctuations in the flow on the dynamical stability characteristics of a two-degree-of-freedom pitch-plunge aeroelastic system with hardening nonlinearity. Dynamical or D-bifurcations are investigated through the computation of the largest Lyapunov exponent, while phenomenological or P-bifurcation analysis is carried out by examining the structure of the joint probability density function of the response quantities and their instantaneous time derivatives. The qualitative nature of P-bifurcation analysis makes it difficult to pinpoint the regimes of different response dynamics. In the light of this difficulty, a quantitative analysis using the Shannon entropy measure has been undertaken to quantify the P-bifurcation regime. This regime is shown to be coincident with the intermittency regime observed in the response time histories prior to flutter oscillations in fluctuating flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Alighanbari, H., Price, S.J.: The post-hopf-bifurcation response of an airfoil in incompressible two-dimensional flow. Nonlinear Dyn. 10, 381–400 (1996)

    Article  Google Scholar 

  2. Andrianne, T., Dimitriadis, G.: Experimental analysis of the bifurcation behavior of a bridge deck undergoing across-wind galloping. In: Proceedings of the 8th international conference on structural dynamics, EURODYN, Leuven. ISBN 978-90-760-1931-4 (2011)

  3. Arecchi, F., Badii, R., Politi, A.: Generalized multistability and noise-induced jumps in a nonlinear dynamical system. Phys. Rev. A 32(1), 402 (1985)

    Article  Google Scholar 

  4. Ariaratnam, A.: Some illustrative examples of stochastic bifurcation. In: Thompson, J.M.T., Bishop, S.R. (eds.) Nonlinearity and Chaos in Engineering Dynamics, chap. 21, pp. 265–274. Wiley (1994)

  5. Arnold, L.: Random Dynamical Systems. Springer, New York (1998)

    Book  MATH  Google Scholar 

  6. Arnold, L., Crauel, H.: Random dynamical systems. Lecture Notes in Mathematica 1486, 1–22 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baxendale, P.H.: Asymptotic behaviour of stochastic flows of diffeomorphisms: two case studies. Probab. Theory Relat. Fields 73(1), 51–85 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crauel, H., Flandoli, F.: Additive noise destroys a pitchfork bifurcation. J. Dyn. Differ. Equ. 10(2), 259–274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daems, D., Nicolis, G.: Entropy production and phase space volume contraction. Phys. Rev. E 59, 4000–4006 (1999). https://doi.org/10.1103/PhysRevE.59.4000

    Article  MathSciNet  Google Scholar 

  10. Dowell, E., Tang, D.: Nonlinear aeroelasticity and unsteady aerodynamics. AIAA J. 40, 1697–707 (2002)

    Article  Google Scholar 

  11. Fung, Y.: An Introduction to the Theory of Aeroelasticity. Wiley, New York (1955)

    Google Scholar 

  12. Gardiner, C.: Stochastic Methods. Springer, Berlin (2009)

    MATH  Google Scholar 

  13. Hoblit, F.M.: Gust Loads on Aircraft: Concepts and Applications. AIAA, Washington, DC (1988)

    Book  Google Scholar 

  14. Horsthemke, W., Lefever, R.: Noise-induced transitions in physics, chemistry, and biology. In: Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology, pp. 164–200 (1984)

  15. Kim, S., Park, S.H., Ryu, C.S.: Noise-enhanced multistability in coupled oscillator systems. Phys. Rev. Lett. 78(9), 1616 (1997)

    Article  Google Scholar 

  16. Korbahti, B., Kagambage, E., Andrianne, T., Razak, N., Dimitriadis, G.: Subcritical, nontypical and period-doubling bifurcations of a delta wing in a low speed wind tunnel. J. Fluids Struct. 27, 408–426 (2011)

    Article  Google Scholar 

  17. Kumar, P.: Investigations into the bifurcation of stochastically excited nonlinear oscillators. Ph.D. thesis, Indian Institute of Technology Madras (2017)

  18. Kumar, P., Narayanan, S., Gupta, S.: Finite element solution of Fokker–Planck equation of nonlinear oscillators subjected to colored non-Gaussian noise. Probab. Eng. Mech. 38, 143–155 (2014)

    Article  Google Scholar 

  19. Kumar, P., Narayanan, S., Gupta, S.: Investigations on the bifurcation of a noisy Duffing-van der Pol oscillator. Probab. Eng. Mech. 45, 70–86 (2016)

    Article  Google Scholar 

  20. Kumar, P., Narayanan, S., Gupta, S.: Stochastic bifurcations in a vibro-impact Duffing-van der Pol oscillator. Nonlinear Dynamics 85, 1–14 (2016)

    Article  MathSciNet  Google Scholar 

  21. Lee, B., Price, S., Wong, Y.: Nonlinear aeroelastic analysis of airfoils: bifurcations and chaos. Prog. Aerosp. Sci. 35, 205–334 (1999)

    Article  Google Scholar 

  22. Lee, B.H.K., Jiang, L.: Flutter of an airfoil with cubic restoring force. J. Fluids Struct. 13, 75–101 (1999)

    Article  Google Scholar 

  23. Masud, A., Bergman, L.A.: Application of multi-scale finite element methods to the solution of the Fokker–Planck equation. Comput. Methods Appl. Mech. Eng. 194(12), 1513–1526 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oseledec, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc 19(2), 197–231 (1968)

    MathSciNet  Google Scholar 

  25. Phillis, Y.: Entropy stability of continuous dynamic system. Int. J. Control 35, 1982 (1982)

    Article  MathSciNet  Google Scholar 

  26. Poirel, D.: Random dynamics of a structurally nonlinear airfoil in turbulent flow. Ph.D. thesis, McGill University, Montreal (2001)

  27. Poirel, D., Harris, Y., Benaissa, A.: Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate reynolds numbers. J. Fluids Struct. 24, 700–719 (2008)

    Article  Google Scholar 

  28. Poirel, D., Price, S.: Bifurcation characteristics of a two-dimensional structurally nonlinear airfoil in turbulent flow. Nonlinear Dyn. 48, 423–435 (2007)

    Article  MATH  Google Scholar 

  29. Poirel, D.C., Price, S.J.: Post-instability behavior of a structurally nonlinear airfoil in longitudinal turbulence. J. Aircr. 34(5), 619–626 (1997)

    Article  Google Scholar 

  30. Poirel, D.C., Price, S.J.: Structurally nonlinear fluttering airfoil in turbulent flow. AIAA J. 39(10), 1960–1968 (2001)

    Article  Google Scholar 

  31. Ramasubramanian, K., Sriram, M.: A comparative study of computation of Lyapunov spectra with different algorithms. Physica D 139(1), 72–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sarkar, S., Bijil, H.: Nonlinear aeroelastic behavior of an oscillating airfoil during stall induced vibration. J. Fluids Struct. 24, 757–777 (2008)

    Article  Google Scholar 

  33. Schenk-Hoppé, K.R.: Bifurcation scenarios of the noisy Duffing-van der Pol oscillator. Nonlinear Dyn. 11(3), 255–274 (1996)

  34. Schuster, H., Just, W.: Deterministic chaos: an introduction. Wiley, Weinheim (2006)

    MATH  Google Scholar 

  35. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  36. Sreenivasan, K., Meneveau, C.: The fractal facets of turbulence. J. Fluid Mech. 173, 357–386 (1986)

    Article  MathSciNet  Google Scholar 

  37. Sreenivasan, K., Meneveau, C.: Singularities of the equations of fluid motion. Phys. Rev. A 38, 6287–6295 (1988)

    Article  Google Scholar 

  38. Venkatramani, J., Krishna Kumar, S., Gupta, S., Sarkar, S.: Physical mechanism of intermittency route to aeroelastic flutter. J. Fluids Struct. 75, 9–26 (2017)

    Article  Google Scholar 

  39. Venkatramani, J., Nair, V., Sujith, R., Gupta, S., Sarkar, S.: Precursors to flutter instability by an intermittency route: a model free approach. J. Fluids Struct. 61, 376–391 (2016)

    Article  Google Scholar 

  40. Venkatramani, J., Nair, V., Sujith, R., Gupta, S., Sarkar, S.: Multi-fractality in aeroelastic response as a precursor to flutter. J. Sound Vib. 386, 390–406 (2017)

    Article  Google Scholar 

  41. Wedig, W.: Dynamic stability of beams under axial forces: Lyapunov exponents for general fluctuating loads. In: Structural Dynamics, pp. 141–148 (1990)

  42. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhao, D., Zhang, Q., Tan, Y.: Random flutter of a 2-DOF nonlinear airfoil in pitch and plunge with freeplay in pitch. Nonlinear Dyn. 58(4), 643–654 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatramani, J., Sarkar, S. & Gupta, S. Intermittency in pitch-plunge aeroelastic systems explained through stochastic bifurcations. Nonlinear Dyn 92, 1225–1241 (2018). https://doi.org/10.1007/s11071-018-4121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4121-5

Keywords

Navigation