Skip to main content
Log in

The incentive effect of venture capital in bilateral partnership systems with the bias mono-stable Cobb–Douglas utility

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Partnerships, between multiple sides that share goals and strive for mutual benefit, are ubiquitous both between and within the enterprises, and competition and cooperation are the fundamental characteristics in partnership systems. As the inherent effect of capital-product switching applied together with stochastic fluctuations of internal and external environments, the effects compete and cooperate to make the system achieve global optimum in the statistical sense. Thus motivated, we establish an over-damped nonlinear Langevin equation to describe the dynamical behaviors subject to the bias mono-stable Cobb–Douglas utility under the wealth-constraint condition. Based on linear response theory, we derive the performance indexes, including output signal-to-noise ratio, stationary unit risk return, systematic risk and bilateral risk, and stochastic resonance (SR) and reverse SR phenomena are observed by the simulations. Finally, we introduce one true example to explain the actual phenomenon observed from the practice. The purpose in this paper is to develop a quantitative method and associated prototype system beg the questions of how the external venture capital incents the partners especially associated with partnership success and what roles the internal and external risks play, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Mohr, J., Spekman, R.: Characteristics of partnership success: partnership attributes, communication behavior, and conflict resolution techniques. Strateg. Manag. J. 15(2), 135–152 (1994)

    Article  Google Scholar 

  2. Kale, P., Singh, H.: Building firm capabilities through learning: the role of the alliance learning process in alliance capability and firm-level alliance success. Strateg. Dir. 28(2), 981–1000 (2008)

    Google Scholar 

  3. Schreiner, M., Kale, P., Corsten, D.: What really is management capability and how does it impact alliance outcomes and success. Strateg. Manag. J. 30(13), 1395–1419 (2009)

    Article  Google Scholar 

  4. Mazouz, B., Facal, J., Viola, J.: Public-private partnership: elements for a project-based management typology. Project Manag. J. 39(2), 98–110 (2008)

    Article  Google Scholar 

  5. Davila, A., Foster, G., Gupta, M.: Venture capital financing and the growth of startup firms. J. Bus. Ventur. 18(6), 689–708 (2003)

    Article  Google Scholar 

  6. Magri, S.: The financing of small innovative firms: the Italian case. Econ. Innov. New Technol. 18(2), 181–204 (2009)

    Article  Google Scholar 

  7. Rin, M., Hellmann, T., Puri, M.: A survey of venture capital research. Soc. Sci. Electron. Publ. 2(Part A), 573–648 (2013)

    Google Scholar 

  8. Lin, L., Yuan, G., Wang, H., Xie, J.: The stochastic incentive effect of venture capital in partnership systems with the asymmetric bistable CobbDouglas utility. Commun. Nonlinear Sci. Numer. Simul, 66, 109–128 (2019)

    Article  MathSciNet  Google Scholar 

  9. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A Math. Gen. 14, L453–L457 (1981)

    Article  MathSciNet  Google Scholar 

  10. Stocks, N., Stein, N., McClintock, P.: Stochastic resonance in monostable systems. J. Phys. A Gener. Phys. 26(7), L385–L390 (1993)

    Article  Google Scholar 

  11. Evstigneev, M., Reimann, P., Pankov, V., Prince, R.: Stochastic resonance in monostable overdamped systems. Europhys. Lett. 65(1), 7–12 (2004)

    Article  Google Scholar 

  12. Agudov, N., Krichigin, A.: Stochastic resonance and antiresonance in monostable systems. Radiophys. Quantum Electron. 51(1), 812–824 (2008)

    Article  MATH  Google Scholar 

  13. Repullo, R., Suarez, J.: Venture capital finance: a security design approach. Rev. Finance 8(1), 75–108 (1999)

    Article  MATH  Google Scholar 

  14. Mandal, P., Garai, A., Roy, T.: Cobb-Douglas based firm production model under fuzzy environment and its solution using geometric programming. Appl. Appl. Math. 11(1), 469–488 (2016)

    MATH  Google Scholar 

  15. Vilar, J., Rubi, J.: Divergent signal-to-noise ratio and stochastic resonance in monostable systems. Phys. Rev. Lett. 77(14), 2863–2866 (2010)

    Article  Google Scholar 

  16. Guo, F., Luo, X., Li, S., Zhou, Y.: Stochastic resonance in a monostable system driven by square-wave signal and dichotomous noise. Chin. Phys. B 19(8), 080504 (2010)

    Article  Google Scholar 

  17. Leng, Y., Zhao, Y.: Pulse response of a monostable system. Acta Phys. Sin. 64(21), 210503 (2015)

    Google Scholar 

  18. Raikher, Y., Stepanov, V.: Stochastic resonance and phase shifts in super paramagnetic particles. Phys. Rev. B 52(5), 3493–3498 (1995)

    Article  Google Scholar 

  19. Khovanov, I., Poloinkin, A., Luchinsky, D., Mcclintock, P.: Noise-induced escape in an excitable system. Phys. Rev. E 87(3), 032116 (2013)

    Article  Google Scholar 

  20. Zhang, W., Xiang, B.: A new single-well potential stochastic resonance algorithm to detect the weak signal. Talanta 70(2), 267–271 (2006)

    Article  Google Scholar 

  21. Lin, L., Wang, H., Lv, W., Zhong, S.: A novel parameter-induced stochastic resonance phenomena in fractional Fourier domain. Mech. Syst. Signal Process. 76–77, 771–779 (2016)

    Article  Google Scholar 

  22. Younesian, D., Jafari, A., Serajian, R.: Effect of the bogie and body inertia on the nonlinear wheel-set hunting recognized by the Hopf bifurcation theory. Int. J. Autom. Eng. 1(3), 186–196 (2011)

    Google Scholar 

  23. Serajian, R.: Parameters’ changing influence with different lateral stiffnesses on nonlinear analysis of hunting behavior of a bogie. J. Vibroeng. 1(4), 195–206 (2013)

    Google Scholar 

  24. Luo, X., Guo, F., Zhou, Y.: Stochastic resonance in an asymmetric monostable system subject to two periodic forces and multiplicative and additive noise. Commun. Theor. Phys. 51, 283–286 (2009)

    Article  MATH  Google Scholar 

  25. Agudov, N., Krichigin, A., Valenti, D., Spagnolo, B.: Stochastic resonance in a trapping overdamped monostable system. Phys. Rev. E 81(1), 051123 (2010)

    Article  Google Scholar 

  26. Yao, M., Xu, W., Ning, L.: Stochastic resonance in a bias monostable system driven by a periodic rectangular signal and uncorrelated noises. Nonlinear Dyn. 67(1), 329–333 (2012)

    Article  MATH  Google Scholar 

  27. Arathi, S., Rajasekar, S.: Stochastic resonance in a single-well anharmonic oscillator with coexisting attractors. Commun. Nonlinear Numer. Simul. 19(12), 4049–4056 (2014)

    Article  MathSciNet  Google Scholar 

  28. Duan, C., Zhan, Y.: The response of a linear monostable system and its application in parameters estimation for PSK signals. Phys. Lett. A 380(14–15), 1358–1362 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Comin, D.: Total factor productivity. Organ. Environ. 19(1), 171–190 (2008)

    Google Scholar 

  30. Lappalainen, J., Niskanen, M.: Financial performance of SMEs: impact of ownership structure and board composition. Manag. Res. Rev. 35(11), 1088–1108 (2012)

    Article  Google Scholar 

  31. Kortenkamp, K., Moore, C.: Time, uncertainty, and individual differences in decisions to cooperate in resource dilemmas. Personal. Soc. Psychol. Bull. 32(5), 603–615 (2006)

    Article  Google Scholar 

  32. Choi, S., Lee, C., Jr, R.: Corporate social responsibility performance and information asymmetry. J. Acc. Public Policy 32(1), 71–83 (2013)

    Article  Google Scholar 

  33. Michaels, A., Gr\(\ddot{\rm u}\)ning, M.: Relationship of corporate social responsibility disclosure on information asymmetry and the cost of capital. J. Manag. Control 28(3), 251–274 (2017)

  34. Reichl, L.: A Modern Course in Statistical Physics, 3rd edn. Wiley, Hoboken (2016)

    Book  MATH  Google Scholar 

  35. Risken, H.: The Fokker-Planck Equation. Methods of Solution and Applications. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  36. Li, J.: Effect of asymmetry on stochastic resonance and stochastic resonance induced by multiplicative noise and by mean-field coupling. Phys. Rev. E 66(3pt1), 031104 (2002)

    Article  Google Scholar 

  37. Hu, G., Haken, H., Ning, C.: Nonlinear-response effects in stochastic resonance. Phys. Rev. E 47(4), 2321–2325 (1993)

    Article  Google Scholar 

  38. Anishchenko, V., Astakhov, V., Vadivasova, T., Neiman, A., Schimansky-Geier, L.: Nonlinear Dynamics of Chaotic and Stochastic Systems, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  39. Dubkov, A., Malakhov, A., Saichev, A.: Correlation time and structure of the correlation function of nonlinear equilibrium brownian motion in arbitrary-shaped potential wells. Radiophys. Quantum Electron. 43(4), 335–346 (2000)

    Article  Google Scholar 

  40. Bali, T., Cakici, N., Chabi-Yo, F.: A generalized measure of riskiness. Manag. Sci. 57(8), 1406–1423 (2011)

    Article  MATH  Google Scholar 

  41. Graf, S., Haertel, L.: The impact of inflation risk on financial planning and risk-return profiles. Astin Bull. 44(2), 335–365 (2014)

    Article  MathSciNet  Google Scholar 

  42. Hitchner, J.: Financial Valuation : Applications and Models, 3rd edn. Wiley, London (2010)

    Google Scholar 

  43. McNamara, B., Wiesenfeld, K.: Theory of stochastic resonance. Phys. Rev. A 39(9), 4854–4869 (1989)

    Article  Google Scholar 

  44. Li, Q., Wang, T., Leng, Y., Wang, G.: Engineering signal processing based on adaptive step-changed stochastic resonance. Mech. Syst. Signal Process. 21(5), 2267–2279 (2007)

    Article  Google Scholar 

  45. Lai, Z., Leng, Y., Sun, J., Fan, S.: Weak characteristic signal detection based on scale transformation of Duffing oscillator. Acta Phys. Sin. 61(5), 050503 (2012)

    Google Scholar 

  46. Zhang, G., Song, Y., Zhang, T.: Stochastic resonance in a single-well system with exponential potential driven by levy noise. Chin. J. Phys. 55(1), 85–95 (2017)

    Article  MathSciNet  Google Scholar 

  47. Dybiec, B.: Levy noises: double stochastic resonance in a single-well potential. Phys. Rev. E 80(4pt1), 041111 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere appreciation and gratitude to the three anonymous reviewers and editor for their patience and constructive comments. This research is sponsored by the National Natural Science Foundation of China (11501386, 11701086), the Basic and Cutting-edge Research Program of Chongqing (cstc2017jcyjAX0412, cstc2017jcyjAX0106), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1600306) and the Natural Science Foundation of Fujian Province (2017J01550). Also special thanks should go to Prof. Hong Ma, Prof. George Xianzhi Yuan, Prof. Shilong Gao and BBD Inc. for the help in providing actual SMEs data from manufacturing industry in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Wang, H., Lin, L. et al. The incentive effect of venture capital in bilateral partnership systems with the bias mono-stable Cobb–Douglas utility. Nonlinear Dyn 95, 3127–3147 (2019). https://doi.org/10.1007/s11071-018-04745-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-04745-1

Keywords

Navigation