Skip to main content
Log in

Escape of a harmonically forced particle from an infinite-range potential well: a transient resonance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper considers a transient process of escape of a classical particle from a one-dimensional potential well. We address a particular model of the infinite-range potential well that allows independent adjustment of the well depth and of the frequency of small oscillations. The problem can be conveniently reformulated in terms of action-angle variables. Further averaging provides a nontrivial conservation law for the slow flow. Then, one can consider the problem in terms of averaged transient dynamics on primary 1:1 resonance manifold. This simplification allows efficient analytic exploration of the escape process. As a result, one obtains a theoretical prediction for minimal forcing amplitude required for the escape, as a function of the excitation frequency. This function exhibits a single sharp minimum for a certain intermediate frequency value, below the frequency of small free oscillations. This result conforms to earlier numeric and semi-analytic estimations for similar escape models, considered, in particular, in connection with problems of ship capsize and dynamic pull-in in microelectromechanical systems. The results presented in the paper allow conjecturing the generic dynamical mechanism, responsible for these regularities. In particular, the aforementioned sharp minimum in the frequency–amplitude domain is related to formation of heteroclinic connection between the saddle points on the resonance manifold. Numeric simulations are in complete qualitative and reasonable quantitative agreement with the theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Landau, L.D., Lifshitz, E.M.: Mechanics, 3rd edn. Butterworth-Heinemann, Oxford (1976)

    MATH  Google Scholar 

  2. Thompson, J.M.T.: Chaotic phenomena triggering the escape from a potential well. In: Szemplinska-Stupnicka, W., Troger, H. (eds.) Engineering Applications of Dynamics of Chaos, CISM Courses and Lectures, vol. 139, pp. 279–309. Springer, Berlin (1991)

    Chapter  Google Scholar 

  3. Virgin, L.N.: Approximate criterion for capsize based on deterministic dynamics. Dyn. Stab. Syst. 4, 56–70 (1988)

    MathSciNet  Google Scholar 

  4. Virgin, L.N., Plaut, R.H., Cheng, C.C.: Prediction of escape from a potential well under harmonic excitation. Int. J. Non-Linear Mech. 21, 357–365 (1992)

    Article  Google Scholar 

  5. Sanjuan, M.A.F.: The effect of nonlinear damping on the universal escape oscillator. Int. J. Bifurc. Chaos 9, 735–744 (1999)

    Article  MATH  Google Scholar 

  6. Mann, B.P.: Energy criterion for potential well escapes in a bistable magnetic pendulum. J. Sound Vib. 323, 864–876 (2009)

    Article  Google Scholar 

  7. Barone, A., Paterno, G.: Physics and Applications of the Josephson Effect. Wiley, New York (1982)

    Book  Google Scholar 

  8. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Quinn, D.D.: Transition to escape in a system of coupled oscillators. Int. J. Non-Linear Mech. 32, 1193–1206 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Belenky, V.L., Sevastianov, N.B.: Stability and Safety of Ships—Risk of Capsizing, 2nd edn. The Society of Naval Architects and Marine Engineers, Jersey City, NJ (2007)

    Google Scholar 

  11. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reduced-order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12, 672–680 (2003)

    Article  Google Scholar 

  12. Alsaleem, F.M., Younis, M.I., Ruzziconi, L.: An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. J. Microelectromech. Syst. 19, 794–806 (2010)

    Article  Google Scholar 

  13. Ruzziconi, L., Younis, M.I., Lenci, S.: An electrically actuated imperfect microbeam: dynamical integrity for interpreting and predicting the device response. Meccanica 48, 1761–1775 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, W.-M., Yan, H., Peng, Z.-K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A Phys. 214, 187–218 (2014)

    Article  Google Scholar 

  15. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A Math. Gen. 14, L453–L457 (1981)

    Article  MathSciNet  Google Scholar 

  16. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223 (1998)

    Article  Google Scholar 

  17. Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear oscillatory chains. Arch. Appl. Mech. 77, 301–312 (2007)

    Article  MATH  Google Scholar 

  18. Manevitch, L.I., Gendelman, O.V.: Tractable Modes in Solid Mechanics. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  19. Vakakis, A.F., Gendelman, O.V., Kerschen, G., Bergman, L.A., McFarland, D.M., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, I and II. Springer, Berlin (2009)

    MATH  Google Scholar 

  20. Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. J. Appl. Mech. Trans. ASME 68, 42–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hayashi, C.: Nonlinear Oscillations in Physical Systems. Princeton University Press, Princeton (2014)

    MATH  Google Scholar 

  22. Gendelman, O.V., Sapsis, T.P.: Energy exchange and localization in essentially nonlinear oscillatory systems: canonical formalism. ASME J. Appl. Mech. 84(1), 011009 (2017)

    Article  Google Scholar 

  23. Kauderer, H.: Nichtlineare Mechanik. Springer, Berlin (1958)

    Book  MATH  Google Scholar 

  24. Dimentberg, M.F., Bratus, A.S.: Bounded parametric control of random vibrations. Proc. R. Soc. Math. Phys. Eng. Sci. 456, 2351–2363 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pilipchuk, V.N.: Transient mode localization in coupled strongly nonlinear exactly solvable oscillators. Nonlinear Dyn. 51, 245–258 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pilipchuk, V.N.: Transitions from strongly to weakly-nonlinear dynamics in a class of exactly solvable oscillators, and nonlinear beat phenomena. Nonlinear Dyn. 52, 263–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, London (2007)

    Book  MATH  Google Scholar 

  28. Percival, I., Richards, D.: Introduction to Dynamics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  29. Manevitch, L.I.: A concept of limiting phase trajectories and description of highly non-stationary resonance processes. Appl. Math. Sci. 9, 4269–4289 (2014)

    Google Scholar 

  30. Kovaleva, A., Manevitch, L.I.: Autoresonance versus localization in weakly coupled oscillators. Physica D 320, 1–8 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Neishtadt, A.I., Vasiliev, A.A.: Change of the adiabatic invariant at a separatrix in a volume-preserving 3D system. Nonlinearity 12, 303–320 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Neishtadt, A.I.: Probability phenomena due to separatrix crossing. Chaos 1, 42–48 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is very grateful to Israel Science Foundation (Grant 838/13) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Gendelman.

Appendix

Appendix

This appendix presents the derivation details for expressions (12) and (14). In accordance with definition (3), the action variable is expressed as follows:

$$\begin{aligned} I(E)= & {} \frac{1}{2\pi }\oint {p(q,E)\mathrm{d}q=} \frac{1}{2\pi }\oint \sqrt{2E+\frac{1}{{\cos }\mathrm{h} ^{2}q}}\mathrm{d}q\nonumber \\= & {} \frac{1}{2\pi }\oint {\sqrt{2E+1-{\tan }\mathrm{h} ^{2}q}\mathrm{d}q} \nonumber \\= & {} \left| {_{a=\sqrt{1+2E},{\tan }\mathrm{h} q=z} } \right| =\frac{2}{\pi }\int _0^a {\frac{\sqrt{a^{2}-z^{2}}}{1-z^{2}}} \mathrm{d}z\nonumber \\= & {} 1-\sqrt{1-a^{2}}=1-\sqrt{-2E} \end{aligned}$$
(A1)

The last integral is easily evaluated with standard methods of contour integration. Inversion of (A1) yields the expression for \(H_0 (I)\) from (12). Expression for the coordinate is calculated as follows:

$$\begin{aligned} \theta= & {} \frac{\partial }{\partial I}\int _0^q {p(q,I)\mathrm{d}q} =\frac{\partial }{\partial I}\int _0^q {\sqrt{2E+\frac{1}{{\cos }\mathrm{h} ^{2}q}}\mathrm{d}q} \nonumber \\= & {} \frac{\partial }{\partial I}\int _0^q {\sqrt{\frac{1}{{\cos }\mathrm{h} ^{2}q}-(1-I)^{2}}\mathrm{d}q} \nonumber \\= & {} -(1-I)\int _0^q {\frac{\mathrm{d}q}{\sqrt{\frac{1}{{\cos }\mathrm{h} ^{2}q}-(1-I)^{2}}}}\nonumber \\= & {} -(1-I)\int _0^q {\frac{\mathrm{d}({\sin }\mathrm{h} q)}{\sqrt{2I-I^{2}-(1-I)^{2}{\sin }\mathrm{h} ^{2}q}}} \nonumber \\= & {} -\arcsin \left( {\frac{(1-I){\sin }\mathrm{h} q}{\sqrt{2I-I^{2}}}} \right) . \end{aligned}$$
(A2)

Then, we obtain the second expression of (12), with insignificant change of sign. By symmetry considerations, Expression (12) for \(q(I,\theta )\) can be expanded in sine-Fourier series:

$$\begin{aligned} q(I,\theta )= & {} {\arcsin }\mathrm{h}\left( {\frac{\sqrt{2I-I^{2}}}{1-I}\sin \theta } \right) \nonumber \\= & {} \sum _{m=1}^\infty {a_m \sin m\theta } \end{aligned}$$
(A3)

From (8) it is obvious that it is necessary to compute only the coefficient \(a_1\). One obtains:

$$\begin{aligned} a_1= & {} \frac{1}{\pi }\int _{-\pi }^\pi {\arcsin }\mathrm{h} (c\sin \theta )\sin \theta \mathrm{d}\theta \nonumber \\= & {} \left. {-\frac{1}{\pi }{\arcsin }\mathrm{h}(c\sin \theta )\cos \theta } \right| _{-\pi }^\pi \nonumber \\&+\frac{4c}{\pi }\int _0^{\pi /2} {\frac{\cos ^{2}\theta }{\sqrt{1+c^{2}\sin ^{2}\theta }}} \mathrm{d}\theta \nonumber \\= & {} \left| {_{\cos \theta =\xi ,k=\frac{c}{\sqrt{1+c^{2}}}} } \right| =\frac{4}{\pi }\int _0^1 {\frac{\xi ^{2}\mathrm{d}\xi }{\sqrt{1-\xi ^{2}}\sqrt{1/{k^{2}}-\xi ^{2}}}} \nonumber \\= & {} \frac{4}{\pi k}\left( {\mathbf{K}(k)-\mathbf{E}(k)} \right) \end{aligned}$$
(A4)

Here \(c=\frac{\sqrt{2I-I^{2}}}{1-I}\), and, consequently, \(k=\sqrt{2I-I^{2}}\), as stated above. Substituting (A3A4) into (5) and (8), one obtains \(q_1 =-\frac{ia_1 }{2}\) and then—expression (13). Further coefficients \(a_m ,m>1\) also are combinations of rational functions and complete elliptic integrals, but become quite awkward even for small m.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gendelman, O.V. Escape of a harmonically forced particle from an infinite-range potential well: a transient resonance. Nonlinear Dyn 93, 79–88 (2018). https://doi.org/10.1007/s11071-017-3801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3801-x

Keywords

Navigation