Skip to main content
Log in

New alternatives for analog implementation of fractional-order integrators, differentiators and PID controllers based on integer-order integrators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we propose an alternative for the circuital realization of analog fractional-order differentiators and integrators without using ladder networks. This alternative is obtained by a mathematical manipulation of a rational function in a similar way to the reported for the synthesis of the variable-state filters. The advantage of the proposed implementation is the requirement of only simple analog design blocks, such as integrators (of integer order), differential amplifiers and two-input adder amplifiers. Most important, contrarily to other reported solutions, the proposed realization can be fulfilled using commercially available resistors and capacitors, with a reduced number of calculations, and without negative impedance converters or inductors. In addition, the orders of the fractional derivative and integral can be modified just varying the gain of the differential amplifiers and adders. To validate the proposal of implementation, and as example of application, we present simulations (HSPICE, MATLAB) and experimental results of a first-order plus dead time plant controlled by fractional-order PI and PID controllers. The experimental results were obtained from a realization using field-programmable analog arrays. A comparison analysis highlights that the proposed alternative of implementation presents advantages regarding a Cauer-network-based realization in terms of number of active and passive elements, number of passive elements with non-commercial available values and design complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Krishna, B.T.: Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)

    Article  MATH  Google Scholar 

  2. Jesus, I.S., Tenreiro, J.A.: Development of fractional order capacitors based on electrolyte processes. Nonlinear Dyn. 56(1–2), 45–55 (2009)

    Article  MATH  Google Scholar 

  3. Biswas, K., Sen, S., Dutta, P.K.: Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Trans. Circuits Syst. II Express Briefs 53(9), 802–806 (2006)

    Article  Google Scholar 

  4. Chen, Y., Petras, I., Xue, D.: Fractional order control - a tutorial. In: 2009 American Control Conference, pp. 1397–1411 (2009)

  5. Podlubny, I., Petras, I., Vinagre, B.M., O’Leary, P., Dorcak, L.: Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29(1), 281–296 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Petrzela, J., Sotner, R., Guzan, M.: Implementation of constant phase elements using low-q band-pass and band-reject filtering sections. In: 2016 International Conference on Applied Electronics (AE), pp. 205–210 (2016)

  7. Antoniou, A.: Floating negative-impedance converters. IEEE Trans. Circuit Theory 19(2), 209–212 (1972)

    Article  Google Scholar 

  8. Dorcák, L., Terpák, J., Petrá, I., Valsa, J., González, E.: Comparison of the electronic realization of the fractional-order system and its model. In: 2012 13th International Carpathian Control Conference (ICCC), pp. 119–124 (2012)

  9. Charef, A.: Analogue realisation of fractional-order integrator, differentiator and fractional \(PI^\lambda D^\mu \) controller. IEE Proc. Control Theory Appl. 153(6), 714–720 (2006)

    Article  Google Scholar 

  10. Huelsman, L.P., Allen, P.E.: Introduction to the theory and design of active filters. Electrical Engineering Series. McGraw-Hill, New York (1980)

    Google Scholar 

  11. Marzaki, M.H., Rahiman, M.H.F., Adnan, R., Tajjudin, M.: Real time performance comparison between PID and Fractional order PID controller in SMISD plant. In: 2015 IEEE 6th Control and System Graduate Research Colloquium (ICSGRC), pp. 141–145 (2015)

  12. Khubalkar, S., Chopade, A., Junghare, A., Aware, M., Das, S.: Design and realization of stand-alone digital fractional order PID controller for buck converter fed DC motor. Circuits Syst. Signal Process. 35(6), 2189–2211 (2016)

  13. Mehta, S., Jain, M.: Comparative analysis of different fractional PID tuning methods for the first order system. In: 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE), pp. 640–646 (2015)

  14. Jáuregui, C., Duarte-Mermoud, M.A., Oróstica, R., Travieso-Torres, J.C., Beytía, O.: Conical tank level control using fractional order pid controllers: a simulated and experimental study. Control Theory Technol. 14(4), 369–384 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Ou, L. Song, and C. Chang. Tuning of fractional PID controllers by using radial basis function neural networks. In: 2010 8th IEEE International Conference on Control and Automation (ICCA), pp. 1239–1244 (2010)

  16. Angel, L., Viola, J.: Design and statistical robustness analysis of FOPID, IOPID and SIMC PID controllers applied to a motor-generator system. IEEE Lat. Am. Trans. 13(12), 3724–3734 (2015)

    Article  Google Scholar 

  17. Viola, J., Angel, L.: Identification, control and robustness analysis of a robotic system using fractional control. IEEE Lat. Am. Trans. 13(5), 1294–1302 (2015)

    Article  Google Scholar 

  18. Tepljakov, A., Petlenkov, E., Belikov, J.: A flexible MATLAB tool for optimal fractional-order PID controller design subject to specifications. In: 2012 31st Chinese Control Conference (CCC), pp. 4698–4703 (2012)

  19. Ujjwala, T., Vrunda, J., Vishwesh, V.: Design of fractional-order pi controllers and comparative analysis of these controllers with linearized, nonlinear integer-order and nonlinear fractional-order representations of pmsm. Int. J. Dyn. Control 5(1), 187–197 (2017)

    Article  MathSciNet  Google Scholar 

  20. AN231E04 Datasheet Rev 1.2. http://www.anadigm.com/an231e04.asp

  21. Herrmann, R.: Fractional Calculus, 1st edn. World Scientific publishing Co, Singapore (2011)

    Book  MATH  Google Scholar 

  22. Zhong, J., Li, L.: Tuning fractional-order \(PI^\lambda D^\mu \) controllers for a solid-core magnetic bearing system. IEEE Trans. Control Syst. Technol. 23(4), 1648–1656 (2015)

    Article  Google Scholar 

  23. Zeid Daou, R.A., Moreau, X., Francis, C.: Study of the effects of structural uncertainties on a fractional system of the first kind—application in vibration isolation with the CRONE suspension. Signal Image Video Process. 6(3), 463–478 (2012)

    Article  Google Scholar 

  24. Tepljakov, A., Petlenkov, E., Belikov, J.: FOMCON: Fractional-order modeling and control toolbox for MATLAB. In: 2011 Proceedings of the 18th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), pp. 684–689 (2011)

  25. Lachhab, N., Svaricek, F., Wobbe, F., Rabba, H.: Fractional order PID controller (FOPID)-Toolbox. In: 2013 European Control Conference (ECC), pp. 3694–3699 (2013)

  26. Lanusse, P., Sabatier, J., Oustaloup, A.: Fractional Order PID and First Generation CRONE Control System Design, pp. 63–105. Springer, Dordrecht (2015)

    MATH  Google Scholar 

  27. Podlubny, I.: Fractional-order systems and \(PI^\lambda D^\mu \)-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Valerio, D., Da Costa, J.S.: Tuning-rules for fractional PID controllers. In: Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Applications FDA06, Porto, Portugal (2006)

  29. Ltifi, A., Ghariani, M., Neji, R.: Performance comparison on three parameter determination method of fractional PID controllers. In: 2013 14th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 453–460 (2013)

  30. Valerio, D., da Costa, J.: Tuning of fractional PID controllers with Ziegler Nichols-type rules. Signal Process. 86(10), 2771–2784 (2006)

    Article  MATH  Google Scholar 

  31. Deepak, V.D., Kumari, U.S.: Modified method of tuning for fractional PID controllers. In: 2014 International Conference on Power Signals Control and Computations, EPSCICON 2014, pp. 8–10 (2014)

  32. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-order Systems and Controls Fundamentals and Applications. Advances in Industrial Control, 1st edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  33. Saidi, B., Amairi, M., Najar, S., Aoun, M.: Bode shaping-based design methods of a fractional order pid controller for uncertain systems. Nonlinear Dyn. 80(4), 1817–1838 (2015)

    Article  MathSciNet  Google Scholar 

  34. Merrikh-Bayat, Farshad, Mirebrahimi, Nafiseh, Khalili, Mohammad Reza: Discrete-time fractional-order pid controller: Definition, tuning, digital realization and some applications. Int. J. Control Autom. Syst. 13(1), 81–90 (2015)

    Article  Google Scholar 

  35. Dobra, P., Trusca, M., Duma, R.: Embedded application of fractional order control. Electron. Lett. 48(24), 1526–1528 (2012)

    Article  Google Scholar 

  36. Truong, V., Moonyong, L.: Analytical design of fractional-order proportional-integral controllers for time-delay processes. ISA Trans. 52(5), 583–591 (2013)

    Article  Google Scholar 

  37. Bongulwar, M.R., Patre, B.M.: Stability regions of closed loop system with one non-integer plus time delay plant by fractional order pid controller. Int. J. Dyn. Control 5(1), 159–167 (2017)

    Article  MathSciNet  Google Scholar 

  38. Cao, J., Liang, J., Cao, B.: Optimization of fractional order PID controllers based on genetic algorithms. In: 2005 International Conference on Machine Learning and Cybernetics, vol. 9, pp. 5686–5689 (2005)

  39. Varshney, P., Gupta, S.K.: Implementation of fractional Fuzzy PID controllers for control of fractional-order systems. In: Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2014, pp. 1322–1328 (2014)

  40. Xue, D., Liu, L., Pan, F.: Variable-order fuzzy fractional PID controllers for networked control systems. In: 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), pp. 1438–1442 (2015)

  41. Valerio, D., Da Costa, J.S.: A review of tuning methods for fractional PIDs. In: Preprints, IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain (2010)

  42. Tsirimokou, G., Psychalinos, C., Elwakil, A.S.: Digitally programmed fractional-order chebyshev filters realizations using current-mirrors. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2337–2340 (2015)

  43. Psychalinos, C., Tsirimokou, G., Elwakil, A.S.: Switched-capacitor fractional-step butterworth filter design. Circuits Syst. Signal Process. 35(4), 1377–1393 (2016)

    Article  MathSciNet  Google Scholar 

  44. Sánchez-López, C., Mendoza-Lopez, J., Muñiz Montero, C., Sánchez-Gaspariano, L.A., Muñoz Pacheco J.M.: Accuracy vs simulation speed trade-off enhancements in the generation of chaotic attractors. In: 2013 IEEE 4th Latin American Symposium on Circuits and Systems, LASCAS 2013 - Conference Proceedings, pp. 4–7 (2013)

  45. Fouda, M.E., Radwan, A.G.: On the fractional-order memristor model. J. Fract. Calculus Appl. 4(1), 1–7 (2013)

Download references

Acknowledgements

This work was supported in part by the National Council for Science and Technology (CONACyT), Mexico, under Grants 181201, 222843 and 237991; in part by the Universidad Autónoma de Tlaxcala (UATx), Tlaxcala de Xicothencatl, TL, Mexico, under Grant CACyPI-UATx-2015; and in part by the Program to Strengthen Quality in Educational under Grant P/PROFOCIE-2015-29MSU0013Y-02

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Tlelo-Cuautle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñiz-Montero, C., García-Jiménez, L.V., Sánchez-Gaspariano, L.A. et al. New alternatives for analog implementation of fractional-order integrators, differentiators and PID controllers based on integer-order integrators. Nonlinear Dyn 90, 241–256 (2017). https://doi.org/10.1007/s11071-017-3658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3658-z

Keywords

Navigation