Skip to main content

Advertisement

Log in

Investigations on the presence of electrical frequency on the characteristics of energy harvesters under base and galloping excitations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The characteristics and performance of piezoelectric energy harvesters concurrently subjected to galloping and base excitations when using a complex electrical circuit are studied. The considered energy harvester is composed of a bilayered cantilever beam with a square cylindrical structure at its tip. Euler–Bernoulli beam theory, nonlinear quasi-steady hypothesis, and Galerkin method are used to develop a reduced order model of this system. The electrical circuitry of the harvester consists of a load resistance, a capacitance, and an inductance. The impacts of the electrical components of the harvester’s circuitry, the wind speed, and the base excitation frequency and acceleration on the broadband characteristics of the harvester, quenching phenomenon, and appearance of new nonlinear behaviors are deeply investigated and discussed. Different methods were used to characterize the new nonlinear phenomena that took place due to mechanical electrical interaction like the power spectrum and time history. When both coupled frequencies of electrical and mechanical types exist and are far from each other, it is shown that the quenching phenomenon is only related to the coupled frequency of mechanical type. It was also proven that this configuration results on high harvested power with low displacement near the electrical frequency. On the other hand, for a well-defined choice of the electrical components, the results show that a broadband configuration of the harvester can be designed. It is also indicated that the quenching phenomenon interacts with the appearance of hysteresis regions that depends on the value of the base acceleration and initial conditions. Moreover, it was shown that the presence of this inductance may result in broadband system harvesting more power from both galloping and base excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric material (2003–2006). Smart Mater. Struct. 16, R1 (2007)

    Article  Google Scholar 

  2. Akaydin, H.D., Elvin, N., Andreopoulos, Y.: The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 21, 025007 (2012)

  3. Dai, H.L., Abdelkefi, A., Wang, L.: Vortex-induced vibrations mitigation through a nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 42, 22–36 (2016)

    Article  Google Scholar 

  4. Zhao, L., Tang, L., Yang, Y.: Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester. Smart Mater. Struct. 22, 125003 (2013)

    Article  Google Scholar 

  5. Javed, U., Abdelkefi, A., Akhtar, I.: An improved stability characterization for aeroelastic energy harvesting applications. Commun. Nonlinear Sci. Numer. Simul. 36, 252–265 (2016)

    Article  Google Scholar 

  6. Jung, H.J., Lee, S.W.: The experimental validation of a new energy harvesting system based on the wake galloping phenomenon. Smart Mater. Struct. 20, 055022 (2011)

    Article  Google Scholar 

  7. Abdelkefi, A., Scanlon, J.M., McDowell, E., Hajj, M.R.: Performance enhancement of piezoelectric energy harvesters from wake galloping. Appl. Phys. Lett. 103, 033903 (2013)

    Article  Google Scholar 

  8. Dowell, E., Edwards, J., Strganac, T.: Nonlinear aeroelasticity. J. Aircr. 40, 857–874 (2003)

    Article  Google Scholar 

  9. Abdelkefi, A., Nuhait, A.O.: Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters. Smart Mater. Struct. 22, 095029 (2013)

    Article  Google Scholar 

  10. Vasconcellos, R., Abdelkefi, A.: Nonlinear dynamical analysis of an aeroelastic system with multi-segmented moment in the pitch degree-of-freedom. Commun. Nonlinear Sci. Numer. Simul. 20, 324–334 (2015)

    Article  Google Scholar 

  11. Abdelkefi, A.: Aeroelastic energy harvesting: a review. Int. J. Eng. Sci. 100, 112–135 (2016)

    Article  Google Scholar 

  12. Yan, Z., Abdelkefi, A., Hajj, M.R.: Piezoelectric energy harvesting from hybrid vibrations. Smart Mater. Struct. 23, 025026 (2014)

    Article  Google Scholar 

  13. Yan, Z., Abdelkefi, A.: Nonlinear characterization of concurrent energy harvesting from galloping and base excitations. Nonlinear Dyn. 77, 1171–1189 (2014)

    Article  Google Scholar 

  14. Bibo, A., Abdelkefi, A., Daqaq, M.F.: Modeling and characterization of a piezoelectric energy harvester under combined aerodynamic and base excitations. Vib. Acoust. 137, 031017 (2015)

    Article  Google Scholar 

  15. Abdelmoula, H., Abdelkefi, A.: Ultra-wide bandwidth improvement of piezoelectric energy harvesters through electrical inductance coupling. Eur. Phys. J. Spec. Top. 224, 2733–2753 (2015)

    Article  Google Scholar 

  16. Abdelmoula, H., Abdelkefi, A.: The potential of electrical impedance on the performance of galloping systems for energy harvesting and control applications. J. Sound Vib. 370, 191–208 (2016)

    Article  Google Scholar 

  17. Abdelkefi, A., Barsallo, N.: Comparative modeling of low-frequency piezomagnetoelastic energy harvesters. J. Intell. Mater. Syst. Struct. 25, 1771–1785 (2014)

    Article  Google Scholar 

  18. De Marqui, C., Vieira, W.G., Erturk, A., Inman, D.J.: Modeling and analysis of piezoelectric energy harvesting from aeroelastic vibrations using the doublet-lattice method. J. Vib. Acoust. 133, 011003 (2011)

    Article  Google Scholar 

  19. Skow, E.A., Cunefare, K.A., Erturk, A.: Power performance improvements for high pressure ripple energy harvesting. Smart Mater. Struct. 23, 104011 (2014)

    Article  Google Scholar 

  20. Renno, M.J., Daqaq, M.F., Inman, D.J.: On the optimal energy harvesting from a vibration source. J. Sound Vib. 320, 386–405 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdelkefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelmoula, H., Abdelkefi, A. Investigations on the presence of electrical frequency on the characteristics of energy harvesters under base and galloping excitations. Nonlinear Dyn 89, 2461–2479 (2017). https://doi.org/10.1007/s11071-017-3597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3597-8

Keywords

Navigation