Skip to main content
Log in

Systematic generation of higher-order solitons and breathers of the Hirota equation on different backgrounds

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the systematic generation of higher-order solitons and breathers of the Hirota equation on different backgrounds. The Darboux transformation is used to construct proper initial conditions for dynamical generation of high-intensity solitons and breathers of different orders on a uniform background. We provide expressions for the Lax pair generating functions and the procedure for calculating higher-order solutions when Jacobi elliptic functions are the background seed solutions of the Hirota equation. We confirm that the peak height of each soliton or breather in the nonlinear Darboux superposition adds linearly, to form the intensity maximum of the final solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tao, Y., He, J.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85, 026601 (2012)

    Article  Google Scholar 

  3. Guo, R., Zhao, X.-J.: Discrete Hirota equation: discrete Darboux transformation and new discrete soliton solutions. Nonlinear Dyn. 84, 1901–1907 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photon. 8, 755 (2014)

    Article  Google Scholar 

  5. Osborne, A.S.: Nonlinear Ocean Waves and the Inverse Scattering Transform. Academic Press, New York (2010)

    MATH  Google Scholar 

  6. Biswas, A., Khalique, C.M.: Stationary solutions for nonlinear dispersive Schroödinger equation. Nonlinear Dyn. 63, 623–626 (2011)

    Article  Google Scholar 

  7. Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belić, M.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1349 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chin, S.A., Ashour, O.A., Belić, M.R.: Anatomy of the Akhmediev breather: cascading instability, first formation time, and Fermi-Pasta-Ulam recurrence. Phys. Rev. E 92, 063202 (2015)

    Article  Google Scholar 

  9. Mani Rajan, M.S., Mahalingam, A.: Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction. Nonlinear Dyn. 79, 2469–2484 (2015)

    Article  MathSciNet  Google Scholar 

  10. Wang, D.-S., Chen, F., Wen, X.-Y.: Darboux transformation of the general Hirota equation: multisoliton solutions, breather solutions and rogue wave solutions. Adv. Differ. Equ. 2016, 67 (2016)

    Article  MathSciNet  Google Scholar 

  11. Agrawal, G.P.: Applications of Nonlinear Fiber Optics. Academic Press, San Diego (2001)

    Google Scholar 

  12. Guo, R., Hao, H.Q.: Breathers and multi-solitons solutions for the higher-order generalized nonlinear Schrödinger equation. Commun. Nonlinear. Sci. Numer. Simul. 18, 2426–2435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Potasek, M.J., Tabor, M.: Exact solutions for an extended nonlinear Schrödinger equation. Phys. Lett. A 154, 449 (1991)

    Article  MathSciNet  Google Scholar 

  14. Cavalcanti, S.B., Cressoni, J.C., da Cruz, H.R., Gouveia-Neto, A.S.: Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation. Phys. Rev. A 43, 6162 (1991)

    Article  Google Scholar 

  15. Trippenbach, M., Band, Y.B.: Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media. Phys. Rev. A 57, 4791 (1998)

    Article  Google Scholar 

  16. Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27, 1393 (1983)

    Article  Google Scholar 

  17. Dudley, J.M., Taylor, J.M.: Supercontinuum Generation in Optical Fibers. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  18. Chin, S.A., Ashour, O.A., Nikolić, S.N., Belić, M.R.: Maximal intensity higher-order Akhmediev breathers of the nonlinear Schrödinger equation and their systematic generation. Phys. Lett. A 380, 3625–3629 (2016)

    Article  MathSciNet  Google Scholar 

  19. Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)

    Article  MathSciNet  Google Scholar 

  20. Guo, B., Ling, L., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Article  Google Scholar 

  21. Mu, G., Qin, Z., Chow, K.W., Ee, B.K.: Localized modes of the Hirota equation: Nth order rogue wave and a separation of variable technique. Commun. Nonlinear Sci. Numer. Simul. 39, 118–133 (2016)

    Article  MathSciNet  Google Scholar 

  22. Yang, Y., Yan, Z., Malomed, B.A.: Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation. Chaos 25, 103112 (2015)

    Article  MathSciNet  Google Scholar 

  23. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  MATH  Google Scholar 

  24. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Circular rogue wave clusters. Phys. Rev. E 84, 056611 (2011)

    Article  MATH  Google Scholar 

  25. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Triangular rogue wave clusters. Phys. Rev. E 86, 056602 (2012)

    Article  Google Scholar 

  26. Akhmediev, N., et al.: Roadmap on optical rogue waves and extreme events. J. Opt. 18, 063001 (2016)

    Article  Google Scholar 

  27. Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Akhmediev, N., Eleonskii, V.M., Kulagin, N.E.: N-modulation signals in a single-mode optical waveguide under nonlinear conditions. Zh. Eksp. Teor. Fiz. 94, 159–170 (1988). [Sov. Phys. JETP 67, 89-95 (1988)]

    Google Scholar 

  29. Geng, X.G., Lv, Y.Y.: Darboux transformation for an integrable generalization of the nonlinear Schrödinger equation. Nonlinear Dyn. 69, 1621–1630 (2012)

    Article  MATH  Google Scholar 

  30. Chowdury, A., Ankiewicz, A., Akhmediev, N.: Moving breathers and breather-to-soliton conversion for the Hirota equation. Proc. R. Soc. A 471, 20150130 (2015)

    Article  MathSciNet  Google Scholar 

  31. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015)

    Article  MathSciNet  Google Scholar 

  32. Schwalm, W.A.: Lectures on Selected Topics in Mathematical Physics: Elliptic Function-sand Elliptic Integrals, vol. 68. Morgan & Claypool publication as part of IOP Concise Physics, San Rafael (2015)

    Book  MATH  Google Scholar 

  33. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Rogue waves and solitons on a cnoidal background. Eur. Phys. J. Spec. Top. 223, 43–62 (2014)

    Article  Google Scholar 

  34. Chin, S.A., Ashour, O.A., Nikolić, S.N., Belić, M.R.: Peak-height formula for higher-order breathers of the nonlinear Schrödinger equation on nonuniform backgrounds. Phys. Rev. E 95, 012211 (2017)

    Article  Google Scholar 

  35. Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93, 012206 (2016)

  36. Kedziora, D.J., Ankiewicz, A., Chowdury, A., Akhmediev, N.: Integrable equations of the infinite nonlinear Schrödinger equation hierarchy with time variable coefficients. Chaos 25, 103114 (2015)

    Article  MathSciNet  Google Scholar 

  37. Ankiewicz, A., Wang, Y., Wabnitz, S., Akhmediev, N.: Extended nonlinear Schrödinger equation with higher-oder odd and even terms and its rogue wave solutions. Phys. Rev. E 89, 012907 (2014)

    Article  Google Scholar 

  38. Yang, Y., Wang, X., Yan, Z.: Optical temporal rogue waves in the generalized inhomogeneous nonlinear Schrödinger equation with varying higher-order even and odd terms. Nonlinear Dyn. 81, 833–842 (2015)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the Qatar National Research Fund (Projects NPRP 6-021-1-005 and NPRP 8-028-1-001), a member of the Qatar Foundation. S.N.N. acknowledges support from Grants III45016 and OI171038 of the Serbian Ministry of Education, Science and Technological Development. N.B.A. acknowledges support from Grant OI171006 of the Serbian Ministry of Education, Science and Technological Development. M.R.B. acknowledges support by the Al-Sraiya Holding Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanko N. Nikolić.

Appendix: The general Darboux transformation scheme

Appendix: The general Darboux transformation scheme

A higher-order soliton (breather) solution of the Nth order is a nonlinear superposition of N independent solitons (breathers), each determined by a complex eigenvalue \(\lambda _j\), where \(1 \le j \le N\) (the real part of the eigenvalue determines the angle between the localized solution and x-axis, while the imaginary part characterizes the periodic modulation frequency [27]). The Nth-order wave function given by the DT is:

$$\begin{aligned} {\psi _n} = {\psi _{n - 1}} + \frac{{2\left( {\lambda _n^* - {\lambda _n}} \right) {s_{n,1}}r_{n,1}^*}}{{{{\left| {{r_{n,1}}} \right| }^2} + {{\left| {{s_{n,1}}} \right| }^2}}}. \end{aligned}$$
(7.1)

In order to find \(r_{n,1}\) and \(s_{n,1}\), one has to analyze recursive relations between \(r_{n,p}(x,t)\) and \(s_{n,p}(x,t)\) functions of the Lax pair equations in the general form:

$$\begin{aligned} \begin{aligned} {r_{n,p}} =&\,\, [\left( {\lambda _{n - 1}^* - {\lambda _{n - 1}}} \right) s_{n - 1,1}^*{r_{n - 1,1}}{s_{n - 1,p + 1}} \\&+ \left( {{\lambda _{p + n - 1}} - {\lambda _{n - 1}}} \right) {\left| {{r_{n - 1,1}}} \right| ^2}{r_{n - 1,p + 1}} \\&+ \left( {{\lambda _{p + n - 1}} - \lambda _{n - 1}^*} \right) {\left| {{s_{n - 1,1}}} \right| ^2}{r_{n - 1,p + 1}}] \\&/\left( {{{\left| {{r_{n - 1,1}}} \right| }^2} + {{\left| {{s_{n - 1,1}}} \right| }^2}} \right) \\ {s_{n,p}} =&\,\, [\left( {\lambda _{n - 1}^* - {\lambda _{n - 1}}} \right) {s_{n - 1,1}}r_{n - 1,1}^*{r_{n - 1,p + 1}} \\&+ \left( {{\lambda _{p + n - 1}} - {\lambda _{n - 1}}} \right) {\left| {{s_{n - 1,1}}} \right| ^2}{s_{n - 1,p + 1}} \\&+ \left( {{\lambda _{p + n - 1}} - \lambda _{n - 1}^*} \right) {\left| {{r_{n - 1,1}}} \right| ^2}{s_{n - 1,p + 1}}] \\&/\left( {{{\left| {{r_{n - 1,1}}} \right| }^2} + {{\left| {{s_{n - 1,1}}} \right| }^2}} \right) . \\ \end{aligned} \end{aligned}$$
(7.2)

From the last equation, it can be deduced that all \(r_{n,p}\) and \(s_{n,p}\) can be calculated just from \(r_{1,j}\) and \(s_{1,j}\), with \(1 \le j \le N\). The functions \(r_{1,j}(x,t)\) and \(s_{1,j}(x,t)\), forming the Lax pair \(R = \left( {\begin{array}{*{20}{c}} r \\ s \\ \end{array}} \right) \equiv \left( {\begin{array}{*{20}{c}} {{r_{1,j}}} \\ {{s_{1,j}}} \\ \end{array}} \right) ,\) are determined by the eigenvalue \(\lambda \equiv \lambda _j\), an embedded arbitrary center of the solution \(\left( x_{0j},t_{0j}\right) \), and a system of linear differential equations:

$$\begin{aligned} \frac{{\partial R}}{{\partial t}} = U \cdot R,\quad \frac{{\partial R}}{{\partial x}} = V \cdot R. \end{aligned}$$
(7.3)

Particularly for the Hirota equation, matrices U and V are defined as (\(\psi \equiv \psi _0\)) [30]:

$$\begin{aligned} U= & {} i\left[ {\begin{array}{*{20}{c}} \lambda &{} {\psi {{(x,t)}^*}} \\ {\psi (x,t)} &{} { - \lambda } \\ \end{array}} \right] ,\nonumber \\ V= & {} \sum \limits _{k = 0}^3 {{\lambda ^k} \cdot i\left[ {\begin{array}{*{20}{c}} {{A_k}} &{} {B_k^*} \\ {{B_k}} &{} { - {A_k}} \\ \end{array}} \right] }, \end{aligned}$$
(7.4)

where the coefficients \(A_k\) and \(B_k\) are

$$\begin{aligned} {A_0}= & {} - \frac{1}{2}|\psi {|^2} - i\alpha \left( {\psi _t^*\psi - {\psi _t}{\psi ^*}} \right) ,\nonumber \\ {B_0}= & {} 2\alpha {\left| \psi \right| ^2}\psi + \frac{1}{2}i{\psi _t} + \alpha {\psi _{tt}}, \nonumber \\ {A_1}= & {} 2\alpha {\left| \psi \right| ^2},\quad {B_1} = \psi - 2i\alpha {\psi _t} \nonumber \\ {A_2}= & {} 1,\quad {B_2} = - 4\alpha \psi ,\quad {A_3} = - 4\alpha ,\quad {B_3} = 0.\nonumber \\ \end{aligned}$$
(7.5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolić, S.N., Aleksić, N.B., Ashour, O.A. et al. Systematic generation of higher-order solitons and breathers of the Hirota equation on different backgrounds. Nonlinear Dyn 89, 1637–1649 (2017). https://doi.org/10.1007/s11071-017-3540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3540-z

Keywords

Navigation