Nonlinear Dynamics

, Volume 89, Issue 3, pp 1637–1649 | Cite as

Systematic generation of higher-order solitons and breathers of the Hirota equation on different backgrounds

  • Stanko N. NikolićEmail author
  • Najdan B. Aleksić
  • Omar A. Ashour
  • Milivoj R. Belić
  • Siu A. Chin
Original Paper


We investigate the systematic generation of higher-order solitons and breathers of the Hirota equation on different backgrounds. The Darboux transformation is used to construct proper initial conditions for dynamical generation of high-intensity solitons and breathers of different orders on a uniform background. We provide expressions for the Lax pair generating functions and the procedure for calculating higher-order solutions when Jacobi elliptic functions are the background seed solutions of the Hirota equation. We confirm that the peak height of each soliton or breather in the nonlinear Darboux superposition adds linearly, to form the intensity maximum of the final solution.


Hirota equation Darboux transformation Higher-order solitons Breathers and rogue waves 



This research is supported by the Qatar National Research Fund (Projects NPRP 6-021-1-005 and NPRP 8-028-1-001), a member of the Qatar Foundation. S.N.N. acknowledges support from Grants III45016 and OI171038 of the Serbian Ministry of Education, Science and Technological Development. N.B.A. acknowledges support from Grant OI171006 of the Serbian Ministry of Education, Science and Technological Development. M.R.B. acknowledges support by the Al-Sraiya Holding Group.


  1. 1.
    Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Tao, Y., He, J.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85, 026601 (2012)CrossRefGoogle Scholar
  3. 3.
    Guo, R., Zhao, X.-J.: Discrete Hirota equation: discrete Darboux transformation and new discrete soliton solutions. Nonlinear Dyn. 84, 1901–1907 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photon. 8, 755 (2014)CrossRefGoogle Scholar
  5. 5.
    Osborne, A.S.: Nonlinear Ocean Waves and the Inverse Scattering Transform. Academic Press, New York (2010)zbMATHGoogle Scholar
  6. 6.
    Biswas, A., Khalique, C.M.: Stationary solutions for nonlinear dispersive Schroödinger equation. Nonlinear Dyn. 63, 623–626 (2011)CrossRefGoogle Scholar
  7. 7.
    Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belić, M.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1349 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chin, S.A., Ashour, O.A., Belić, M.R.: Anatomy of the Akhmediev breather: cascading instability, first formation time, and Fermi-Pasta-Ulam recurrence. Phys. Rev. E 92, 063202 (2015)CrossRefGoogle Scholar
  9. 9.
    Mani Rajan, M.S., Mahalingam, A.: Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction. Nonlinear Dyn. 79, 2469–2484 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, D.-S., Chen, F., Wen, X.-Y.: Darboux transformation of the general Hirota equation: multisoliton solutions, breather solutions and rogue wave solutions. Adv. Differ. Equ. 2016, 67 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Agrawal, G.P.: Applications of Nonlinear Fiber Optics. Academic Press, San Diego (2001)Google Scholar
  12. 12.
    Guo, R., Hao, H.Q.: Breathers and multi-solitons solutions for the higher-order generalized nonlinear Schrödinger equation. Commun. Nonlinear. Sci. Numer. Simul. 18, 2426–2435 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Potasek, M.J., Tabor, M.: Exact solutions for an extended nonlinear Schrödinger equation. Phys. Lett. A 154, 449 (1991)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cavalcanti, S.B., Cressoni, J.C., da Cruz, H.R., Gouveia-Neto, A.S.: Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation. Phys. Rev. A 43, 6162 (1991)CrossRefGoogle Scholar
  15. 15.
    Trippenbach, M., Band, Y.B.: Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media. Phys. Rev. A 57, 4791 (1998)CrossRefGoogle Scholar
  16. 16.
    Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27, 1393 (1983)CrossRefGoogle Scholar
  17. 17.
    Dudley, J.M., Taylor, J.M.: Supercontinuum Generation in Optical Fibers. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  18. 18.
    Chin, S.A., Ashour, O.A., Nikolić, S.N., Belić, M.R.: Maximal intensity higher-order Akhmediev breathers of the nonlinear Schrödinger equation and their systematic generation. Phys. Lett. A 380, 3625–3629 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Guo, B., Ling, L., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)CrossRefGoogle Scholar
  21. 21.
    Mu, G., Qin, Z., Chow, K.W., Ee, B.K.: Localized modes of the Hirota equation: Nth order rogue wave and a separation of variable technique. Commun. Nonlinear Sci. Numer. Simul. 39, 118–133 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yang, Y., Yan, Z., Malomed, B.A.: Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation. Chaos 25, 103112 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Circular rogue wave clusters. Phys. Rev. E 84, 056611 (2011)CrossRefzbMATHGoogle Scholar
  25. 25.
    Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Triangular rogue wave clusters. Phys. Rev. E 86, 056602 (2012)CrossRefGoogle Scholar
  26. 26.
    Akhmediev, N., et al.: Roadmap on optical rogue waves and extreme events. J. Opt. 18, 063001 (2016)CrossRefGoogle Scholar
  27. 27.
    Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Akhmediev, N., Eleonskii, V.M., Kulagin, N.E.: N-modulation signals in a single-mode optical waveguide under nonlinear conditions. Zh. Eksp. Teor. Fiz. 94, 159–170 (1988). [Sov. Phys. JETP 67, 89-95 (1988)]Google Scholar
  29. 29.
    Geng, X.G., Lv, Y.Y.: Darboux transformation for an integrable generalization of the nonlinear Schrödinger equation. Nonlinear Dyn. 69, 1621–1630 (2012)CrossRefzbMATHGoogle Scholar
  30. 30.
    Chowdury, A., Ankiewicz, A., Akhmediev, N.: Moving breathers and breather-to-soliton conversion for the Hirota equation. Proc. R. Soc. A 471, 20150130 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Schwalm, W.A.: Lectures on Selected Topics in Mathematical Physics: Elliptic Function-sand Elliptic Integrals, vol. 68. Morgan & Claypool publication as part of IOP Concise Physics, San Rafael (2015)CrossRefzbMATHGoogle Scholar
  33. 33.
    Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Rogue waves and solitons on a cnoidal background. Eur. Phys. J. Spec. Top. 223, 43–62 (2014)CrossRefGoogle Scholar
  34. 34.
    Chin, S.A., Ashour, O.A., Nikolić, S.N., Belić, M.R.: Peak-height formula for higher-order breathers of the nonlinear Schrödinger equation on nonuniform backgrounds. Phys. Rev. E 95, 012211 (2017)CrossRefGoogle Scholar
  35. 35.
    Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93, 012206 (2016)Google Scholar
  36. 36.
    Kedziora, D.J., Ankiewicz, A., Chowdury, A., Akhmediev, N.: Integrable equations of the infinite nonlinear Schrödinger equation hierarchy with time variable coefficients. Chaos 25, 103114 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ankiewicz, A., Wang, Y., Wabnitz, S., Akhmediev, N.: Extended nonlinear Schrödinger equation with higher-oder odd and even terms and its rogue wave solutions. Phys. Rev. E 89, 012907 (2014)CrossRefGoogle Scholar
  38. 38.
    Yang, Y., Wang, X., Yan, Z.: Optical temporal rogue waves in the generalized inhomogeneous nonlinear Schrödinger equation with varying higher-order even and odd terms. Nonlinear Dyn. 81, 833–842 (2015)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Stanko N. Nikolić
    • 1
    • 2
    Email author
  • Najdan B. Aleksić
    • 1
    • 2
  • Omar A. Ashour
    • 1
    • 3
  • Milivoj R. Belić
    • 1
  • Siu A. Chin
    • 3
  1. 1.Science ProgramTexas A&M University at QatarDohaQatar
  2. 2.Institute of Physics BelgradeUniversity of BelgradeBelgradeSerbia
  3. 3.Department of Physics and AstronomyTexas A&M UniversityCollege StationUSA

Personalised recommendations