Skip to main content
Log in

Nonlinear dynamic modeling and performance analysis of a redundantly actuated parallel manipulator with multiple actuation modes based on FMD theory

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel redundantly actuated parallel manipulator (PM) with multiple actuation modes was developed recently by the author. In this paper, the further research is implemented and a systematic methodology is proposed to develop the rigid–flexible coupling dynamic model (RFDM) of the novel PM based on the flexible multi-body dynamics theory. Firstly, under the floating frame of reference, an arbitrary flexible link of the novel PM is regarded as an Euler–Bernoulli beam and the finite element approach is employed to discretize the flexible beam. Then, one kind of planar beam element with lumped masses and moments of inertia at both ends is presented and a corresponding dynamic model is deduced based on the Lagrangian formulation. On this basis, the RFDM of system is formulated by virtue of the augmented Lagrangian multipliers approach. Given the stiff characteristic of system dynamic model, the hybrid TR-BDF2 numerical algorithm combined with Baumgarte stabilization approach is employed to address the nonlinear RFDM so as to balance the solution efficiency and precision. Based on the RFDM and its degradation model, i.e., the rigid dynamic model, one dynamic simulation experiment is designed to investigate the dynamic performance of the PM. Numerical results indicate that the practical motion of the PM manifests rigid–flexible coupling characteristic, and the redundant actuation modes can attenuate the effect of link flexibility and improve the trajectory tracking precision of end-effector in comparison with the non-redundant actuation modes. Finally, to validate the presented methodology, the obtained numerical results are compared with a virtual prototype model developed based on SimMechanics. The results will be helpful for structure optimization and efficient controller design of the PM with multiple actuation modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(O{-}x{-}y\) :

The global coordinate system

\(O_j {-}\bar{{x}}{-}\bar{{y}}\) :

The relative coordinate system

\({\varvec{r}}_{O_j}\) :

The radius vector of the original point of body-fixed coordinate system

\({\varvec{r}}_{0,j}\) :

The radius vector of arbitrary point P in the body-fixed coordinate system before the deformation of flexible body j

\(\varvec{\delta }_p\) :

The vector of deformation displacements

\({\varvec{r}}_p\) :

The position vector of point P in the global coordinate system

\({\varvec{R}}(\phi _j)\) :

The rotational transformation matrix

\(\phi _j\) :

The angular displacement of flexible body j

\({\varvec{u}}_{f_i }^j\) :

The array of flexible generalized coordinates of an arbitrary element i in flexible body j

\(v_i^j (\bar{{x}}_i ,t)\) :

The axial elastic deformation of element i in flexible body j

\(w_i^j (\bar{{x}}_i ,t)\) :

The transverse elastic deformation of element i in flexible body j

\({\varvec{N}}_i^j (\bar{{x}}_i )\) :

The shape function matrix of element i in flexible body j

\(l_i^j \) :

The length of element i in flexible body j

\({\varvec{U}}_f^j\) :

The array of global deformation displacements of flexible body j

\({\varvec{r}}_{0,i}^j\) :

The coordinate array of point \(P_i^j \) of element i before the deformation of flexible body j

\({\varvec{B}}_i^j\) :

The Boolean indicated matrix

\({\varvec{D}}^{j}\) :

The transformation matrix of global deformation generalized coordinates

\({\varvec{q}}_j \) :

The vector of generalized coordinates of flexible body j

\(m_{di}^j\) :

The mass of intermediate continuous section of element i

\(\rho \) :

The mass density of element material

\(V_i^j \) :

The volume of the intermediate continuous section of element i

\(T_{t,i}^j \) :

The kinetic energy of intermediate continuous section of element i

\({\varvec{M}}_{t,i}^j \) :

The mass matrix corresponding to the intermediate continuous section of element i

\(m_{O_{1i} }^j , m_{O_{2i} }^j\) :

The lumped masses located at both ends of element i

\(J_{O_{1i} }^j , J_{O_{2i} }^j\) :

The lumped moments of inertia located at both ends of element i

\(l_{O_{1i} }^j , l_{O_{2i} }^j\) :

The distances from the initial position to the both ends points of element i in the undeformed state, respectively

\(T_{t,c}^j\) :

The translational kinetic energy of lumped masses located at both ends of element i

\({\varvec{M}}_{O_{1i} }^j , {\varvec{M}}_{O_{2i} }^j\) :

The mass matrices of the lumped masses of element i

\(\theta _{O_{1i} }^j , \theta _{O_{2i} }^j\) :

The rotational angles of two end points of element i

\(T_{r,c}^j \) :

The rotational kinetic energy of lumped moments of inertia at both ends of element i

\({\varvec{M}}_{J_{O1i} }^j , {\varvec{M}}_{J_{O2i} }^j\) :

The mass matrices of the lumped moments of inertia of element i

\(T_i^j \) :

The total kinetic energy of element i

\({\varvec{M}}_i^j\) :

The mass matrix of element i in flexible body j

\(U_{p,i}^j\) :

The total potential energy of element i in flexible body j

E :

The Young’s modulus of beam material

I :

The area moment of inertia of beam cross section

A :

The cross-sectional area of beam

\({\varvec{K}}_i^j\) :

The stiffness matrix of element i

\(\mathscr {L}_i^j\) :

The Lagrangian function of element i

\({\varvec{F}}_{e,i}^j\) :

The column matrix of generalized external forces of element i

\({\varvec{C}}_i^j \) :

The centrifugal and Coriolis force matrix of element i in flexible body j

\({\varvec{I}}\) :

The identity matrix

\({\bar{\varvec{M}}}_j \) :

The mass matrix of flexible body j

\({\bar{\varvec{C}}}_j \) :

The centrifugal and Coriolis force matrix of flexible body j

\({\bar{\varvec{K}}}_j \) :

The stiffness matrix of flexible body j

\({\bar{\varvec{F}}}_{e,j} \) :

The column matrix of generalized external forces of flexible body j

\(n_j \) :

The number of elements in flexible body j

\({\varvec{q}}^{(\mathrm{s})}\) :

The vector of generalized coordinates of system

\({\bar{\varvec{M}}}^{(\mathrm{s})}\) :

The mass matrix of system without constraint

\({\bar{\varvec{C}}}^{(\mathrm{s})}\) :

The centrifugal and Coriolis force matrix of system without constraint

\({\bar{\varvec{K}}}^{(\mathrm{s})}\) :

The stiffness matrix of system without constraint

\({\bar{\varvec{F}}}_e^{(\mathrm{s})}\) :

The column matrix of generalized external forces of system

\(\varvec{{\varPhi }}({\varvec{q}}^{(\mathrm{s})},t)\) :

The constraint equations of system

\(\varvec{{\varPhi }}_c ({\varvec{q}}^{(\mathrm{s})},t)\) :

The constraint Jacobian matrix of system

\({\varvec{\gamma }}\) :

The right-hand side of acceleration constraint equations

\({\varvec{\lambda }}\) :

The vector of Lagrangian multipliers

\({\bar{\varvec{\gamma }}}\) :

The modification term of the right-hand side of acceleration constraint equations

\(\alpha , \beta \) :

The stability coefficients of Baumgarte stabilization method

\({\tilde{\bar{\varvec{M}}}}^{\mathrm{(s)}}\) :

The equivalent mass matrix of system

\({\tilde{\bar{\varvec{H}}}}^{(\mathrm{s})}\) :

The quadratic velocity forces of system

\({\tilde{\bar{\varvec{K}}}}^{(\mathrm{s})}\) :

The equivalent stiffness matrix of system

\({\tilde{\bar{\varvec{F}}}}_e^{(\mathrm{s})}\) :

The equivalent column matrix of generalized forces of system

\(a_c \) :

The acceleration of end-effector

\(a_{\max }\) :

The maximum acceleration of end-effector

\(v_c \) :

The velocity of end-effector

\(\bar{{\varDelta }}_{\mathrm{error}} \) :

The mean-square deviation error

\(x_i^\mathrm{d} ,y_i^\mathrm{d}\) :

The position coordinates of the \(i{\mathrm{th}}\) sample point on the desired trajectory

\(x_i ,y_i\) :

The position coordinates of the \(i{\mathrm{th}}\) sample point on the practical trajectory

AMM:

Assumed mode method

ANCF:

Absolute nodal coordinate formulation

DOF(s):

Degree(s) of freedom

FEM:

Finite element method

FFRF:

Floating frame of reference formulation

FMD:

Flexible multi-body dynamics

FSM:

Finite segment method

KED:

Kineto-elasto dynamics

ODE(s):

Ordinary differential equation(s)

PDE(s):

Partial differential equation(s)

PM(s):

Parallel manipulator(s)

PSB(s):

Parallelogram structure branche(s)

RAParM:

Redundantly actuated parallel manipulator

RDM:

Rigid dynamic model

RFDM:

Rigid–flexible coupling dynamic model

VPM:

Virtual prototype model

References

  1. Merlet, J.-P.: Parallel Robots, 2nd edn. Springer, Dordrecht (2006)

  2. Stefan, S., Liu, X.J., Wang, J.S.: Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear. Dyn 50(1–2), 1–12 (2007)

    MATH  Google Scholar 

  3. Gosselin, C., Angeles, J.: Singularity analysis of closed-loop kinematic chains. IEEE. Trans. Robot. Autom. 6(3), 281–290 (1990)

    Article  Google Scholar 

  4. Liu, X.J., Wang, J.S., Pritschow, G.: Kinematics, singularity and workspace of planar 5R symmetrical parallel mechanisms. Mech. Mach. Theory 41(2), 145–169 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arsenault, M., Bourdeau, R.: The synthesis of three-degree-of-freedom planar parallel mechanisms with revolute joints (3-RRR) for an optimal singularity-free workspace. J. Robot. Syst. 21(5), 259–274 (2004)

    Article  MATH  Google Scholar 

  6. Dash, A.K., Chen, I.M., Yeo, S.H., Yang, G.: Workspace generation and planning singularity-free path for parallel manipulators. Mech. Mach. Theory 40(7), 776–805 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Macho, E., Altuzarra, O., Pinto, C., Hernandez, A.: Workspace associated to assembly modes of the 5R planar parallel manipulator. Robotica 26(3), 395–403 (2008)

    Article  Google Scholar 

  8. Ebrahimi, I., Carretero, J.A., Boudreau, R.: Kinematic analysis and path planning of a new kinematically redundant planar parallel manipulator. Robotica 26(3), 405–413 (2008)

    Article  Google Scholar 

  9. Cha, S.-H., Lasky, T.A., Velinsky, S.A.: Determination of the kinematically redundant active prismatic joint variable ranges of a planar parallel mechanism for singularity-free trajectories. Mech. Mach. Theory 44(5), 1032–1044 (2009)

    Article  MATH  Google Scholar 

  10. Wang, L.P., Wu, J., Wang, J.S.: Dynamic formulation of a planar 3-DOF parallel manipulator with actuation redundancy. Robot. Comput. Integr. Manuf. 26(1), 67–73 (2010)

    Article  MathSciNet  Google Scholar 

  11. Müller, A.: Motion equations in redundant coordinates with application to inverse dynamics of constrained mechanical systems. Nonlinear Dyn. 67(4), 2527–2541 (2012)

    Article  MathSciNet  Google Scholar 

  12. Wu, J., Chen, X.L., Wang, L.P., Liu, X.J.: Dynamic load-carrying capacity of a novel redundantly actuated parallel conveyor. Nonlinear Dyn. 78(1), 241–250 (2014)

    Article  Google Scholar 

  13. Cheng, C., Xu, Wl, Shang, J.Z.: Optimal distribution of the actuating torques for a redundantly actuated masticatory robot with two higher kinematic pairs. Nonlinear Dyn. 79(2), 1235–1255 (2015)

    Article  Google Scholar 

  14. Liang, D., Song, Y., Sun, T., Dong, G.: Optimum design of a novel redundantly actuated parallel manipulator with multiple actuation modes for high kinematic and dynamic performance. Nonlinear Dyn. 83(1–2), 631–658 (2016)

    Article  MathSciNet  Google Scholar 

  15. Song, Y., Liang, D., Sun, T., Dong, G.: A redundantly actuated 2-DOF planar parallel manipulator with parallelogram structure branches. CN patent 104526685 (2016) (in chinese)

  16. Dasgupta, B., Mruthyunjaya, T.S.: A Newton–Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech. Mach. Theory 33(8), 1135–1152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheng, G., Shan, X.: Dynamics analysis of a parallel hip joint simulator with four degree of freedoms (3R1T). Nonlinear Dyn. 70(4), 2475–2486 (2012)

    Article  MathSciNet  Google Scholar 

  18. Geng, Z., Haynes, L.S., Lee, J.D., Carroll, R.L.: On the dynamic model and kinematic analysis of a class of Stewart platforms. Robot. Auton. Syst. 9(4), 237–254 (1992)

    Article  Google Scholar 

  19. Staicu, S.: Power requirement comparison in the 3-RPR planar parallel robot dynamics. Mech. Mach. Theory 44(5), 1045–1057 (2009)

    Article  MATH  Google Scholar 

  20. Miller, K.: Optimal design and modeling of spatial parallel manipulators. Int. J. Robot. Res. 23(2), 127–140 (2004)

    Article  Google Scholar 

  21. Desoyer, K., Lugner, P.: Recursive formulation for the analytical or numerical application of the Gibbs–Appell method to the dynamics of robots. Robotica 7(4), 343–347 (1989)

    Article  Google Scholar 

  22. Shabana, A.: Dynamics of Multibody Systems. Cambridge University Press, New York (2005)

  23. Zhang, X., Mills, J.K., Cleghorn, W.L.: Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible links. Multibody Syst. Dyn. 21(2), 167–192 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Badlani, M., Midha, A.: Member initial curvature effects on the elastic slider–crank mechanism response. ASME J. Mech. Des. 104(1), 159–167 (1982)

    Article  Google Scholar 

  25. Zohoor, H., Khorsandijou, S.M.: Dynamic model of a flying manipulator with two highly flexible links. Appl. Math. Model. 32(10), 2117–2132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, L., Liu, J.: Observer-based partial differential equation boundary control for a flexible two-link manipulator in task space. IET Control Theory A 6(13), 2120–2133 (2012)

    Article  MathSciNet  Google Scholar 

  27. Sandor, G.N., Zhuang, X.: A lineared lumped parameter approach to vibration and stress analysis of elastic linkages. Mech. Mach. Theory 20(5), 427–437 (1985)

    Article  Google Scholar 

  28. Chen, W.: Dynamic modeling of multi-link flexible robotic manipulators. Comput. Struct. 79(2), 183–195 (2001)

    Article  Google Scholar 

  29. Tso, S.K., Yang, T.W., Xu, W.L., Sun, Z.Q.: Vibration control for a flexible-link robot arm with deflection feedback. Int. J. Non-linear Mech. 38(1), 51–62 (2003)

    Article  MATH  Google Scholar 

  30. Mirzaee, E., Eghtesad, M., Fazelzadeh, S.A.: Maneuver control and active vibration suppression of a two-link flexible arm using a hybrid variable structure/Lyapunov control design. Acta Astronaut. 67(9), 1218–1232 (2010)

    Article  Google Scholar 

  31. Bricout, J.N., Debus, J.C., Micheau, P.: A finite element model for the dynamics of flexible manipulator. Mech. Mach. Theory 25(1), 119–128 (1990)

    Article  Google Scholar 

  32. Yang, Z., Sadler, J.P.: A one-pass approach to dynamics of high-speed machinery through three-node Lagrangian beam elements. Mech. Mach. Theory 34(7), 995–1007 (1999)

    Article  MATH  Google Scholar 

  33. Chung, J., Yoo, H.H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249(1), 147–164 (2002)

    Article  Google Scholar 

  34. Korayem, M.H., Heidari, A., Nikoobin, A.: Maximum allowable dynamic load of flexible mobile manipulators using finite element approach. Int. J. Manuf. Technol. 36(5–6), 606–617 (2008)

    Article  Google Scholar 

  35. Sonneville, V., Cardona, A., Brüls, O.: Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Comput. Methods Appl. Mech. Eng. 268, 451–474 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Huston, R.L.: Multi-body dynamics including the effects of flexibility and compliance. Comput. Struct. 14(5–6), 443–451 (1981)

    Article  Google Scholar 

  37. Wittbrodt, E., Wojciech, S.: Application of rigid finite element method to dynamic analysis of spatial systems. J. Guid. Control Dyn. 18(4), 891–898 (1995)

    Article  Google Scholar 

  38. Rubinstein, D.: Dynamics of a flexible beam and a system of rigid rods, with fully inverse (one-sided) boundary conditions. Comput. Methods Appl. Mech. 175(1), 87–97 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Theodore, R.J., Ghosal, A.: Comparison of the assumed modes and finite element models for flexible multi-link manipulators. Int. J. Robot. Res. 14(2), 91–111 (1995)

    Article  Google Scholar 

  40. Erdman, A.G., Sandor, G.N.: Kineto-elastodynamics—a review of the state of the art and trends. Mech. Mach. Theory 7(1), 19–33 (1972)

    Article  Google Scholar 

  41. Turcic, D.A., Midha, A.: Generalized equations of motion for the dynamic analysis of elastic mechanism systems. J. Dyn. Syst. T ASME 106(4), 243–248 (1984)

    Article  MATH  Google Scholar 

  42. Masurekar, V., Gupta, K.N.: Theoretical and experimental kineto elastodynamic analysis of high speed linkage. Mech. Mach. Theory 24(5), 325–334 (1989)

    Article  Google Scholar 

  43. Liou, F.W., Peng, K.C.: Experimental frequency response analysis of flexible mechanisms. Mech. Mach. Theory 28(1), 73–81 (1993)

    Article  Google Scholar 

  44. Likins, P.W.: Dynamic analysis of a system of hinge-connected rigid bodies with nonrigid appendages. Int. J. Solids Struct. 9(12), 1473–1487 (1973)

    Article  MATH  Google Scholar 

  45. Singh, R.P., VanderVoort, R.J., Likins, P.W.: Dynamics of flexible bodies in tree topology—a computer-oriented approach. J. Guid. Control Dyn. 8(5), 584–590 (1985)

    Article  MATH  Google Scholar 

  46. Meirovitch, L.: Hybrid state equations of motion for flexible bodies in terms of quasi-coordinates. J. Guid. Control Dyn. 14(5), 1008–1013 (1991)

    Article  MATH  Google Scholar 

  47. Shabana, A.A.: An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies. Technical Report MBS96-1-UIC, Department of Mechanical Engineering, University of Illinois at Chicago (1996)

  48. Iwai, R., Kobayashi, N.: A new flexible multibody beam element based on the absolute nodal coordinate formulation using the global shape function and the analytical mode shape function. Nonlinear Dyn. 34(1–2), 207–232 (2003)

    Article  MATH  Google Scholar 

  49. Liu, C., Tian, Q., Hu, H., García-Vallejo, D.: Simple formulations of imposing moments and evaluating joint reaction forces for rigid-flexible multibody systems. Nonlinear Dyn. 69(1–2), 127–147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rong, B.: Efficient dynamics analysis of large-deformation flexible beams by using the absolute nodal coordinate transfer matrix method. Multibody Syst. Dyn. 32(4), 535–549 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Jia, S.S., Song, Y.M.: Elastic dynamic analysis of synchronous belt drive system using absolute nodal coordinate formulation. Nonlinear Dyn. 81(3), 1393–1410 (2015)

    Article  MATH  Google Scholar 

  52. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–615 (2003)

    Article  Google Scholar 

  54. Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41(7), 749–777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Jonker, J.B., Aarts, R.G.K.M.: A perturbation method for dynamic analysis and simulation of flexible manipulators. Multibody Syst. Dyn. 6(3), 245–266 (2001)

    Article  MATH  Google Scholar 

  56. Martins, J., Botto, M.A., da Costa, J.S.: Modeling flexible beams for robotic manipulators. Multibody Syst. Dyn. 7(1), 79–100 (2002)

    Article  MATH  Google Scholar 

  57. Martins, J.M., Mohamed, Z., Tokhi, M.O., Da Costa, J.S., Botto, M.A.: Approaches for dynamic modelling of flexible manipulator systems. IET Control Theory A 150(4), 401–411 (2003)

    Article  Google Scholar 

  58. Cai, G.P., Lim, C.W.: Active control of a flexible hub–beam system using optimal tracking control method. Int. J. Mech. Sci. 48(10), 1150–1162 (2006)

    Article  MATH  Google Scholar 

  59. Bian, Y., Gao, Z., Yun, C.: Motion control of the flexible manipulator via controllable local degrees of freedom. Nonlinear Dyn. 55(4), 373–384 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. Boscariol, P., Gasparetto, A.: Model-based trajectory planning for flexible-link mechanisms with bounded jerk. Robot. Comput. Integr. Manuf. 29(4), 90–99 (2013)

    Article  Google Scholar 

  61. Gofron, M., Shabana, A.A.: Effect of the deformation in the inertia forces on the inverse dynamics of planar flexible mechanical systems. Nonlinear Dyn. 6(1), 1–20 (1994)

    Google Scholar 

  62. Yu, S.D., Xi, F.: Free vibration analysis of planar flexible mechanisms. J. Mech. Des. 125(4), 764–772 (2003)

    Article  Google Scholar 

  63. Pennestrì, E., Valentini, P.P., de Falco, D.: An application of the Udwadia–Kalaba dynamic formulation to flexible multibody systems. J. Frankl. Inst. 347(1), 173–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  64. Kuo, Y.L., Cleghorn, W.L.: Curvature- and displacement-based finite element analyses of flexible slider crank mechanisms. Int. J. Numer. Methods Biomed. Eng. 26(10), 1228–1245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  65. Gasparetto, A.: On the modeling of flexible-link planar mechanisms: experimental validation of an accurate dynamic model. J. Dyn. Syst.-T ASME 126(2), 365–375 (2004)

    Article  Google Scholar 

  66. Piras, G., Cleghorn, W.L., Mills, J.K.: Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links. Mech. Mach. Theory 40(7), 849–862 (2005)

    Article  MATH  Google Scholar 

  67. Wang, X., Mills, J.K.: FEM dynamic model for active vibration control of flexible linkages and its application to a planar parallel manipulator. Appl. Acoust. 66(10), 1151–1161 (2005)

    Article  Google Scholar 

  68. Kang, B., Mills, J.K.: Dynamic modeling of structurally-flexible planar parallel manipulator. Robotica 20(3), 329–339 (2002)

    Article  Google Scholar 

  69. Zhang, Q., Mills, J.K., Cleghorn, W.L., Jin, J., Zhao, C.: Trajectory tracking and vibration suppression of a 3-PRR parallel manipulator with flexible links. Multibody Syst. Dyn. 33(1), 27–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  70. Yu, Y.Q., Du, Z.C., Yang, J.X., Li, Y.: An experimental study on the dynamics of a 3-RRR flexible parallel robot. IEEE Trans. Robot. 27(5), 992–997 (2011)

    Article  Google Scholar 

  71. Zhang, Q., Zhang, X.: Dynamic analysis of planar 3- RRR flexible parallel robots under uniform temperature change. J. Vib. Control 21(1), 81–104 (2013)

    Article  Google Scholar 

  72. Liu, S.Z., Yu, Y.Q., Zhu, Z.C., Su, L.Y., Liu, Q.B.: Dynamic modeling and analysis of 3-RRS parallel manipulator with flexible links. J. Cent. South Univ. 17, 323–331 (2010)

    Article  Google Scholar 

  73. Zhao, Y., Gao, F., Dong, X., Zhao, X.: Dynamics analysis and characteristics of the 8-PSS flexible redundant parallel manipulator. Robot. Comput. Integr. Manuf. 27(5), 918–928 (2011)

    Article  Google Scholar 

  74. Mukherjee, P., Dasgupta, B., Mallik, A.K.: Dynamic stability index and vibration analysis of a flexible Stewart platform. J. Sound Vib. 307(3), 495–512 (2007)

  75. Song, Y., Dong, G., Sun, T., Lian, B.: Elasto-dynamic analysis of a novel 2-DoF rotational parallel mechanism with an articulated travelling platform. Meccanica 51(7), 1547–1557 (2015)

    Article  MathSciNet  Google Scholar 

  76. Sun, T., Song, Y., Yan, K., Dong, G.: Elasto-dynamic modeling of a novel high-speed parallel manipulator with string-parallelogram Mechanism. 13th World Congress in Mechanism and Machine Science, Guanajuato, México (2011)

  77. Liu, X.J., Wang, J.S.: Some new parallel mechanisms containing the planar four-bar parallelogram. Int. J. Robot. Res. 22(9), 717–732 (2003)

    Article  Google Scholar 

  78. Zienkiewicz, O.C.: A new look at the Newmark, Houbolt and other time stepping formulas. A weighted residual approach. Int. J Earthq. Eng. Struct. Dyn. 5(4), 413–418 (1977)

    Article  Google Scholar 

  79. Bathe, K.J., Wilson, E.L.: Stability and accuracy analysis of direct integration methods. Int. J. Earthq. Eng. Struct. Dyn. 1(3), 283–291 (1972)

    Article  Google Scholar 

  80. Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On an implementation of the Hiber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics. J. Comput. Nonlinear Dyn. 2(1), 73–85 (2007)

    Article  Google Scholar 

  81. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60(2), 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  82. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. 1(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  83. Shampine, L.F., Gear, C.W.: A user’s view of solving stiff ordinary differential equations. SIAM Rev. 21(1), 1–17 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  84. Shampine, L.F., Reichelt, M.W.: The matlab ode suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  85. Hosea, M.E., Shampine, L.F.: Analysis and implementation of TR-BDF2. Appl. Numer. Math. 20(1), 21–37 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  86. Valipour, M.: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorol. Appl. 23(1), 91–100 (2016)

    Article  Google Scholar 

  87. Valipour, M., Banihabib, M.E., Behbahani, S.M.R.: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476, 433–441 (2013)

    Article  Google Scholar 

  88. Valipour, M., Sefidkouhi, M.A.G., Eslamian, S.: Surface irrigation simulation models: a review. Int. J. Hydrol. Sci. Technol. 5(1), 51–70 (2015)

    Article  Google Scholar 

  89. Valipour, M.: Sprinkle and trickle irrigation system design using tapered pipes for pressure loss adjusting. J. Agric. Sci. 4(12), 125–133 (2012)

    Google Scholar 

  90. Khasraghi, M.M., Sefidkouhi, M.A.G., Valipour, M.: Simulation of open- and closed-end border irrigation systems using SIRMOD. Arch. Agron. Soil Sci. 61(7), 929–941 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51475321 and Tianjin Research Program of Application Foundation and Advanced Technology under Grant No. 15JCZDJC38900. These supports are sincerely acknowledged. The authors would also like to express the genuine thanks to the editors and reviewers for their contributions to the publications of high-quality papers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, D., Song, Y. & Sun, T. Nonlinear dynamic modeling and performance analysis of a redundantly actuated parallel manipulator with multiple actuation modes based on FMD theory. Nonlinear Dyn 89, 391–428 (2017). https://doi.org/10.1007/s11071-017-3461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3461-x

Keywords

Navigation