Skip to main content
Log in

Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible links

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Modeling of multibody dynamics with flexible links is a challenging task, which not only involves the effect of rigid body motion on elastic deformations, but also includes the influence of elastic deformations on rigid body motion. This paper presents coupling characteristics of rigid body motions and elastic motions of a 3-PRR parallel manipulator with three flexible intermediate links. The intermediate links are modeled as Euler–Bernoulli beams with pinned-pinned boundary conditions based on the assumed mode method (AMM). Using Lagrange multipliers, the fully coupled equations of motions of the flexible parallel manipulator are developed by incorporating the rigid body motions with elastic motions. The mutual dependence of elastic deformations and rigid body motions are investigated from the analysis of the derived equations of motion. Open-loop simulation without joint motion controls and closed-loop simulation with joint motion controls are performed to illustrate the effect of elastic motion on rigid body motions and the coupling effect amongst flexible links. These analyses and results provide valuable insight to the design and control of the parallel manipulator with flexible intermediate links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caracciolo, R., Richiedei, D., Trevisani, A.: Experimental validation of a model-based robust controller for multi-body mechanisms with flexible links. Multibody Syst. Dyn. 20, 129–145 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alam, M.S., Tokhi, M.O.: Designing feedforward command shapers with multi-objective genetic optimization for vibration control of a single-link flexible manipulator. Eng. Appl. Artif. Intell. 21(2), 229–246 (2008)

    Article  Google Scholar 

  3. Shabana, A.A.: Flexible multibody dynamics: Review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators: A literature review. Mech. Mach. Theory 41, 749–777 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zohoor, H., Khorsandijou, S.M.: Dynamic model of a flying manipulator with two highly flexible links. Appl. Math. Model. 32, 2117–2132 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Shimizu, T., Sasaki, M., Okada, T.: Tip position control of a two links flexible manipulator based on the dynamic extension technique. In: SICE Annual Conference, pp. 868–873. Japan (2007)

  7. Badlani, M., Midha, A.: Member initial curvature effects on the elastic slider-crank mechanism response. ASME J. Mech. Des. 104(1), 159–167 (1982)

    Google Scholar 

  8. Deü, J.F., Galucio, A.C., Ohayon, R.: Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput. Struct. 86, 258–265 (2008)

    Article  Google Scholar 

  9. Cleghorn, W.L., Fenton, R.G., Tabarrok, B.: Finite element analysis of high-speed flexible mechanisms. Mech. Mach. Theory 16, 407–424 (1981)

    Article  Google Scholar 

  10. Bayo, E.: A fininte element approach to control the end-point motion of single-link flexible robot. J. Robot. Syst. 1, 63–75 (1987)

    Article  Google Scholar 

  11. Korayem, M.H., Heidari, A., Nikoobin, A.: Maximum allowable dynamic load of flexible mobile manipulators using finite element approach. Int. J. Manuf. Technol. 36, 1010–1021 (2008)

    Article  Google Scholar 

  12. Mohamed, Z., Tokhi, M.O.: Command shaping techniques for vibration control of flexible robot manipulator. Mechatronics 14, 69–90 (2004)

    Article  Google Scholar 

  13. Chung, J., Yoo, H.H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249(1), 147–164 (2002)

    Article  Google Scholar 

  14. Tso, S.K., Yang, T.W., Xu, W.L., Sun, Z.Q.: Vibration control for a flexible robot arm with deflection feedback. Int. J. Non-linear Mech. 38, 51–62 (2003)

    Article  MATH  Google Scholar 

  15. Theodore, R.J., Ghosal, A.: Comparison of the assumed modes and finite element models for flexible multi-link manipulators. Int. J. Robot. Res. 14, 91–111 (1995)

    Article  Google Scholar 

  16. Loudini, M., Boukhetala, D., Tadjine, M.: Comprehensive mathematical modeling of a lightweight flexible link robot manipulator. Int. J. Model. Identif. Control 2(4), 313–321 (2007)

    Article  Google Scholar 

  17. Ahmad, M.A., Mohamed, Z., Hambali, N.: Dynamic modeling of a two-link flexible manipulator system incorporating payload. In: 3rd IEEE Conference on Industrial Electronics and Applications, pp. 96–101 (2008)

  18. Turcic, D.A., Midha, A.: Generalized equations of motion for the dynamic analysis of elastic mechanism systems. ASME J. Dyn. Syst. Meas. Control 106(4), 243–248 (1984)

    MATH  Google Scholar 

  19. Turcic, D.A., Midha, A.: Dynamic analysis of elastic mechanism systems. Part 2: Experimental results. ASME J. Dyn. Syst. Meas. Control 106(4), 249–254 (1984)

    MATH  Google Scholar 

  20. Gasparetto, A.: On the modeling of flexible-link planar mechanisms: Experimental validation of an accurate dynamic model. ASME J. Dyn. Syst. Meas. Control 126, 365–375 (2004)

    Article  Google Scholar 

  21. Nagarajan, S., Turcic, D.A.: Lagrangian formulation of the equations of motion for elastic mechanisms with mutual dependence between rigid body and elastic motions. Part I: Element level equations. ASME J. Dyn. Syst. Meas. Control 112, 203–214 (1990)

    Article  Google Scholar 

  22. El-Absy, H., Shabana, A.A.: Coupling between rigid body and deformation modes. J. Sound Vib. 198(5), 617–637 (1996)

    Article  Google Scholar 

  23. Yang, Z., Sadler, J.P.: A one-pass approach to dynamics of high-speed machinery through three-node Lagrangian beam elements. Mech. Mach. Theory 34, 995–1007 (1999)

    Article  MATH  Google Scholar 

  24. Karkoub, K., Yigit, A.S.: Vibration control of a four-bar mechanism with a flexible coupler link. J. Sound Vib. 222(2), 171–189 (1999)

    Article  Google Scholar 

  25. Luqris, U., Naya, M.A., Gonzalez, F., Cuadrado, J.: Performance and application criteria of two fast formulations for flexible multibody dynamics. Mech. Based Des. Struct. Mach. 35(4), 381–404 (2007)

    Article  Google Scholar 

  26. Huston, R.L.: Multibody structural dynamics including translation between the bodies. Comput. Struct. 12, 713–720 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  27. Usuro, P.B., Nadira, R., Mahil, S.S.: A finite element/Lagrange approach to model lightweight flexible manipulators. ASME J. Dyn. Syst. Meas. Control 108, 198–205 (1986)

    Article  Google Scholar 

  28. Lee, H.H.: New dynamic modeling of flexible link robots. ASME J. Dyn. Syst. Meas. Control 127, 307–309 (2005)

    Article  Google Scholar 

  29. Vakil, M., Fotouhi, R., Nikiforuk, P.N., Salmasi, H.: A constrained Lagrange formulation of multilink planar flexible manipulator. ASME J. Vib. Acoust. 130, 1–16 (2008)

    Article  Google Scholar 

  30. Giovagnoni, M.: Dynamics of flexible closed-chain manipulator. ASME Des. Tech. Conf. 69(2), 483–490 (1992)

    Google Scholar 

  31. Lee, J.D., Geng, Z.: Dynamic model of a flexible Stewart platform. Comput. Struct. 48(3), 367–374 (1993)

    Article  MATH  Google Scholar 

  32. Zhou, Z., Xi, J., Mechefske, C.K.: Modeling of a fully flexible 3PRS manipulator for vibration analysis. J. Mech. Des. 128, 403–412 (2006)

    Article  Google Scholar 

  33. Du, Z., Yu, Y., Zhang, X.: Dynamic modeling of planar flexible parallel manipulators. Chin. J. Mech. Eng. 43(9), 96–101 (2007)

    Article  Google Scholar 

  34. Kang, B.S., Mills, J.K.: Dynamic modeling of structurally-flexible planar parallel manipulator. Robotica 20(3), 329–339 (2002)

    Article  Google Scholar 

  35. Zhang, X., Mills, J.K., Cleghorn, W.L.: Dynamic modeling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links. J. Intell. Robot Syst. 50, 323–340 (2007)

    Article  MATH  Google Scholar 

  36. Zhang, X., Mills, J.K., Cleghorn, W.L.: Study on the effect of elastic deformations on rigid body motions of a 3-PRR flexible parallel manipulator. In: Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, pp. 1805–1810 (2007)

  37. Kang, B.S., Chu, J., Mills, J.K.: Design of high speed planar manipulator and multiple simultaneous specification control. In: Proceedings of the IEEE International Conference on Robotics & Automation, pp. 2723–2728. Seoul, Korea (2001)

  38. Kroneis, J., Liu, S.: Flexible body modeling and vibration damping for a planar parallel robot using input shaping. In: IEEE/ASME Int. Conf. Adv. Intell. Mechatron. (2007)

  39. Siciliano, B., Book, W.: A singular perturbation approach to control of lightweight flexible manipulators. Int. J. Robot. Res. 17(4), 79–90 (1988)

    Article  Google Scholar 

  40. The Math Works, Inc.: Solve initial value problems for ordinary differential equations (ODEs), MATLAB Function Reference (1994–2005)

  41. Ledesma, R., Bayo, E.: A non-recursive Lagrangian solution of the non-causal inverse dynamics of flexible multibody systems: The plane case. Int. J. Numer. Meth. Eng. 36, 2725–2741 (1993)

    Article  MATH  Google Scholar 

  42. Mills, J.K., Goldenberg, A.A.: Force and position control of manipulators during constrained motion tasks. IEEE Trans. Robot. Autom. 5(1), 30–46 (1989)

    Article  Google Scholar 

  43. Jalon, G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, Berlin (1993)

    Google Scholar 

  44. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  45. Bayo, E., Jalon, G., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng. 71, 183–195 (1988)

    Article  MATH  Google Scholar 

  46. Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. ASME J. Mech. Des. 104, 247–255 (1982)

    Article  Google Scholar 

  47. Varanasi, K.K., Nayfeh, S.A.: The dynamic of lead-screw drives: Low-order modeling and experiments. ASME J. Mech. Des. 126, 388–396 (2004)

    Google Scholar 

  48. Zhang, X., Mills, J.K., Cleghorn, W.L.: Effect of axial forces on lateral stiffness of a flexible 3-PRR parallel manipulator moving high-speed. In: IEEE International Conference on Information and Automation. Zhangjiajie, China (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Mills, J.K. & Cleghorn, W.L. Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible links. Multibody Syst Dyn 21, 167–192 (2009). https://doi.org/10.1007/s11044-008-9133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-008-9133-3

Keywords

Navigation