Skip to main content

Advertisement

Log in

Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, an eco-epidemiological system with weak Allee effect and harvesting in prey population is discussed by a system of delay differential equations. The delay parameter regarding the time lag corresponds to the predator gestation period. Mathematical features such as uniform persistence, permanence, stability, Hopf bifurcation at the interior equilibrium point of the system is analyzed and verified by numerical simulations. Bistability between different equilibrium points is properly discussed. The chaotic behaviors of the system are recognized through bifurcation diagram, Poincare section and maximum Lyapunov exponent. Our simulation results suggest that for increasing the delay parameter, the system undergoes chaotic oscillation via period doubling. We also observe a quasi-periodicity route to chaos and complex dynamics with respect to Allee parameter; such behavior can be subdued by the strength of the Allee effect and harvesting effort through period-halving bifurcation. To find out the optimal harvesting policy for the time delay model, we consider the profit earned by harvesting of both the prey populations. The effect of Allee and gestation delay on optimal harvesting policy is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Allee, W.C.: Animal Aggregations. A Study in General Sociology. University of Chicago Press, Chicago (1931)

    Book  Google Scholar 

  2. Allen, J.C., Schaffer, W.M., Rosko, D.: Chaos reduces species extinctions by amplifying local population noise. Nature 364, 229–232 (1993)

    Article  Google Scholar 

  3. Angulo, E., Roemer, G.W., Berec, L., Gascoigen, J., Courchamp, F.: Double Allee effects and extinction in the island fox. Conserv. Biol. 21, 1082–1091 (2007)

    Article  Google Scholar 

  4. Bairagi, N., Roy, P.K., Chattopadhyay, J.: Role of infection on the stability of a predator–prey system with several response functions—a comparative study. J. Theor. Biol. 248, 10–25 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bairagi, N., Chaudhuri, S., Chattopadhyay, J.: Harvesting as a disease control measure in an eco-epidemiological system—a theoretical study. Math. Biosci. 217, 134–144 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berec, L., Angulo, E., Courchamp, F.: Multiple Allee effects and population management. Trends Ecol. Evol. 20, 185–191 (2006)

    Google Scholar 

  7. Biswas, S., Sasmal, S.K., Samanta, S., Saifuddin, Md, Ahmed, Q.J.K., Chattopadhyay, J.: A delayed eco-epidemiological system with infected prey and predator subject to the weak Allee effect. Math. Biosci. 263, 198–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Biswas, S., Sasmal, S.K., Saifuddin, Md, Chattopadhyay, J.: On existence of multiple periodic solutions for Lotka–Volterra’s predator–prey model with Allee effects. Nonlinear Stud. 22(2), 189–199 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Biswas, S., Samanta, S., Chattopadhyay, J.: Cannibalistic predator–prey model with disease in predator—a delay model. Int. J. Bifurc. Chaos 25(10), 1550130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Biswas, S., Saifuddin, M., Sasmal, S.K., Samanta, S., Pal, N., Ababneh, F., Chattopadhyay, J.: A delayed prey–predator system with prey subject to the strong Allee effect and disease. Nonlinear Dyn. 84, 1569–1594 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chattopadhyay, J., Arino, O.: A predator–prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chattopadhyay, J., Bairagi, N.: Pelicans at risk in Salton Sea—an eco-epidemiological study. Ecol. Model. 136, 103–112 (2001)

    Article  Google Scholar 

  13. Chattopadhyay, J., Sarkar, R.R., Ghosal, G.: Removal of infected prey prevent limit cycle oscillations in an infected prey–predator system a mathematical study. Ecol. Model. 156, 113–121 (2002)

    Article  Google Scholar 

  14. Chaudhuri, K.S.: Dynamic optimization of combined harvesting of a two species fishery. Ecol. Model. 41, 17–25 (1988)

    Article  Google Scholar 

  15. Chen, Y., Yu, J., Sun, C.: Stability and Hopf bifurcation analysis in a three-level food chain system with delay. Chaos Solitons Fract. 31, 683–694 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Clark, C.W.: Bioecnomic Modelling and Fisheries Management. Wiley, New York (1985)

    Google Scholar 

  17. Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York (1990)

    MATH  Google Scholar 

  18. Cohn, J.P.: Saving the Salton Sea. Math. Biosci. 50(4), 295–301 (2000)

    Article  Google Scholar 

  19. Courchamp, F., Clutton-Brock, T., Grenfell, B.: Multipack dynamics and the Allee effect in the African wild dog, Lycaon pictus. Anim. Conserv. 3, 277–285 (2000)

    Article  Google Scholar 

  20. Courchamp, F., Berec, L., Gascoigne, J.: Allee Effects in Ecology and Conservation. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  21. Dong, T., Liao, X.: Bogdanov–Takens bifurcation in a trineuron BAM neural network model with multiple delays. Nonlinear Dyn. 71(3), 583–595 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Drake, J.: Allee effects and the risk of biological invasion. Risk Anal. 24, 795–802 (2004)

    Article  Google Scholar 

  23. Gu, X., Zhu, W.: Stochastic optimal control of predator–prey ecosystem by using stochastic maximum principle. Nonlinear Dyn. 1–8 (2016)

  24. Gulland, F.M.D.: The Impact of Infectious Diseases on Wild Animal Populations—A Review, Ecology of Infectious Diseases in Natural Populations. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  25. Hadeler, K.P., Freedman, H.I.: Predator–prey populations with parasitic infection. J. Math. Biol. 27, 609–631 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hale, J.K., Waltman, P.: Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20(2), 388–395 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hassard, B., Kazarinof, D., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  28. Hethcote, H.W., Wang, W., Han, L., Ma, Z.: A predator–prey model with infected prey. Theor. Popul. Biol. 66, 259–268 (2004)

    Article  Google Scholar 

  29. Hilker, F.M., Langlais, M., Petrovskii, S.V., Malchow, H.: A diffusive SI model with Allee effect and application to FIV. Math. Biosci. 206, 61–80 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, G., Takeuchi, Y.: Global analysis on delay epidemiological dynamic models with nonlinear incidence. J. Math. Biol. 63(1), 125–139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Huisman, J., Weissing, F.J.: Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999)

    Article  Google Scholar 

  32. Jana, S., Kar, T.: A mathematical study of a preypredator model in relevance to pest control. Nonlinear Dyn. 74, 667–674 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jana, S., Guria, S., Das, U., Kar, T., Ghorai, A.: Effect of harvesting and infection on predator in a prey–predator system. Nonlinear Dyn. 81, 917–930 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kang, Y., Sasmal, S.K., Bhowmick, A.R., Chattopadhyay, J.: Dynamics of a predator–prey system with prey subject to Allee effects and disease. Math. Biosci. Eng. 11(4), 877–918 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kuang, Y.: Delay Differential Equation with Applications in Population Dynamics. Academic Press, New York (1993)

    MATH  Google Scholar 

  36. Kumar, D., Chakrabarty, S.P.: A comparative study of bioeconomic ratio-dependent predator–prey model with and without additional food to predator. Nonlinear Dyn. 80(1–2), 23–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lafferty, K.D., Morris, A.K.: Altered behaviour of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77, 1390–1397 (1996)

    Article  Google Scholar 

  38. Leonel, R.J., Prunaret, D.F., Taha, A.K.: Big bang bifurcations and Allee effect in blumbergs dynamics. Nonlinear Dyn. 77(4), 1749–1771 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liao, M.X., Tang, X.H., Xu, C.J.: Bifurcation analysis for a three-species predator–prey system with two delays. Commun. Nonlinear Sci. Numer. Simul. 17, 183–194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, Z., Yuan, R.: Stability and bifurcation in a delayed predator–prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 296, 521–537 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ma, J., Song, X., Jin, W., Wang, C.: Autapse-induced synchronization in a coupled neuronal network. Chaos Solitons Fract. 80, 31–38 (2015)

    Article  MathSciNet  Google Scholar 

  42. Martin, A., Ruan, S.: Predator–prey models with delay and prey harvesting. J. Math. Biol. 43(3), 247–267 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Meng, X.Y., Huo, H.F., Zhang, X.B., Xiang, H.: Stability and hopf bifurcation in a three-species system with feedback delays. Nonlinear Dyn. 64, 349–364 (2011)

    Article  MathSciNet  Google Scholar 

  44. Mukandavire, Z., Garira, W., Chiyaka, C.: Asymptotic properties of an HIV/AIDS model with a time delay. J. Math. Anal. Appl. 330(2), 916–933 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Myres, R., Barrowman, N., Hutchings, J., Rosenberg, A.: Population dynamics of exploited fish stocks at low population levels. Science 269, 1106–1108 (1995)

    Article  Google Scholar 

  46. Pablo, A.: A general class of predation models with multiplicative Allee effect. Nonlinear Dyn. 78(1), 629–648 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pal, N., Samanta, S., Biswas, S., Alquran, M., Al-Khaled, K., Chattopadhyay, J.: Stability and bifurcation analysis of a three-species food chain model with delay. Int. J. Bifurc. Chaos 25(09), 1550123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Peng, F., Kang, Y.: Dynamics of a modified lesliegower model with double Allee effects. Nonlinear Dyn. 80, 1051–1062 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Qin, H., Wu, Y., Wang, C., Ma, J.: Emitting waves from defects in network with autapses. Commun. Nonlinear Sci. Numer. Simul. 23(1), 164–174 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rohani, P., Miramontes, O., Hassell, M.: Quasiperiodicity and chaos in population models. Proc. R. Soc. Lond. B: Biol. Sci. 258(1351), 17–22 (1994)

    Article  Google Scholar 

  51. Saifuddin, M., Sasmal, S.K., Biswas, S., Sarkar, S., Alquranc, M., Chattopadhyaya, J.: Effect of emergent carrying capacity in an eco-epidemiological system. Math. Methods Appl. Sci. 39(4), 806–823 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Saifuddin, M., Biswas, S., Samanta, S., Sarkar, S., Chattopadhyaya, J.: Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator. Chaos Solitons Fract. 91, 270–285 (2016)

    Article  MathSciNet  Google Scholar 

  53. Sasmal, S.K., Chattopadhyay, J.: An eco-epidemiological system with infected prey and predator subject to the weak Allee effect. Math. Biosci. 246, 260–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sasmal, S.K., Bhowmick, A.R., Al-Khaled, K., Bhattacharya, S., Chattopadhyay, J.: Interplay of functional responses and weak Allee effect on pest control via viral infection or natural predator: an eco-epidemiological study. Differ. Equ. Dyn. Syst. 24(1), 21–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sasmal, S.K., Kang, Y., Chattopadhyay, J.: Intra-specific competition in predator can promote the coexistence of an eco-epidemiological model with strong Allee effects in prey. BioSystems 137, 34–44 (2015)

    Article  Google Scholar 

  56. Shi, J., Shivaji, R.: Persistence in reaction diffusion models with weak Allee effect. J. Math. Biol. 52, 807–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sun, C., Han, M., Lin, Y., Chen, Y.: Global qualitative analysis for a predator–prey system with delay. Chaos Solitons Fract. 32(4), 1582–1596 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  58. Taylor, C., Hastings, A.: Allee effects in biological invasions. Ecol. Lett. 8, 895–908 (2005)

    Article  Google Scholar 

  59. Wei, C., Chen, L.: Periodic solution and heteroclinic bifurcation in a predator–prey system with Allee effect and impulsive harvesting. Nonlinear Dyn. 76(2), 1109–1117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang, J., Jiang, W.: Bifurcation and chaos of a delayed predator–prey model with dormancy of predators. Nonlinear Dyn. 69, 1541–1558 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wolf, A., Swift, J., Swinney, H., Vastano, J.: Determining lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  62. Xiao, Y., Chen, L.: Modelling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  63. Xu, C., Tang, X., Liao, M., He, X.: Bifurcation analysis in a delayed lotka–volterra predator–prey model with two delays. Nonlinear Dyn. 66, 169–183 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. Xua, R., Gan, Q., Ma, Z.: Stability and bifurcation analysis on a ratio-dependent predator–prey model with time delay. J. Comput. Appl. Math. 230, 187–203 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Yan, J., Zhao, A., Yan, W.: Existence and global attractivity of periodic solution for an impulsive delay differential equation with Allee effect. J. Math. Anal. Appl. 309, 489–504 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  66. Yakubu, A.A.: Allee effects in a discrete-time SIS epidemic model with infected newborns. J. Differ. Equ. Appl. 13, 341–356 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  67. Yao, C., Ma, J., Li, C., He, Z.: The effect of process delay on dynamical behaviors in a self-feedback nonlinear oscillator. Commun. Nonlinear Sci. Numer. Simul. 39, 99–107 (2016)

    Article  MathSciNet  Google Scholar 

  68. Zaman, G., Kang, Y.H., Jung, H.: Optimal treatment of an SIR epidemic model with time delay. BioSystems 98, 43–50 (2009)

    Article  Google Scholar 

  69. Zhou, S.R., Liu, Y.E., Wang, G.: The stability of predator–prey systems subject to the Allee effects. Theor. Popul. Biol. 67, 23–31 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

SB’s and MD’s research are supported by the senior research fellowship from the University Grants Commission, Government of India. SKS’s and SS’s research works are supported by NBHM postdoctoral fellowship. JC’s research is partially supported by a DAE project (Ref Nos. 2/48(4)/2010-R and D II/8870).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydev Chattopadhyay.

Appendix

Appendix

We can write the first equation of the system (4) as

$$\begin{aligned} \frac{\mathrm{d}S}{\mathrm{d}t}= & {} S\left[ \left( 1-S-I\right) \frac{S}{S+\theta } - \beta I -q_1 E\right] . \end{aligned}$$

So,

$$\begin{aligned}&\frac{\mathrm{d}S}{\mathrm{d}t} \le S(1-S),\\&\therefore \lim \sup _{t\rightarrow \infty }S(t)\le 1. \end{aligned}$$

Let \(V_1 = S + I\), taking its time derivative along the solution of the system (4), we have

$$\begin{aligned} \dot{V_1}= & {} S(1{-}S{-}I)\frac{S}{S{+}\theta } - aPI - \mu I{-}q_1 E S -q_2 E I, \\\le & {} 1 - S - I.\\&\quad \therefore \dot{V_1} + V_1 \le 1 \Rightarrow \lim _{t\rightarrow \infty } V_1(t) \le 1. \end{aligned}$$

So,

$$\begin{aligned} \lim _{t\rightarrow \infty } I(t) \le 1. \end{aligned}$$

Define a function \(V_2 = \frac{1}{a}I(t-\tau ) + \frac{1}{\alpha }P(t)\), taking its time derivative along the solution of the system (4), we have

$$\begin{aligned} \dot{V_2}\le & {} \beta S(t-\tau )I(t-\tau ) - \frac{\mu }{a} I(t-\tau )-\frac{d}{\alpha }P(t), \\\le & {} \beta -\min \{\mu ,d\}V_2.\\&\quad \therefore \lim _{t\rightarrow \infty } P(t) \le M, \end{aligned}$$

where \(M=\frac{\beta \alpha }{\min \{\mu ,d\}}.\) Hence, proposition follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Sasmal, S.K., Samanta, S. et al. Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects. Nonlinear Dyn 87, 1553–1573 (2017). https://doi.org/10.1007/s11071-016-3133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3133-2

Keywords

Navigation