Skip to main content
Log in

Global analysis on delay epidemiological dynamic models with nonlinear incidence

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we derive and study the classical SIR, SIS, SEIR and SEI models of epidemiological dynamics with time delays and a general incidence rate. By constructing Lyapunov functionals, the global asymptotic stability of the disease-free equilibrium and the endemic equilibrium is shown. This analysis extends and develops further our previous results and can be applied to the other biological dynamics, including such as single species population delay models and chemostat models with delay response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arino J, van den Driessche P (2006) Time delays in epidemic models: modeling and numerical considerations. In: Arino O, Hbid ML, Ait Dads E (eds) Delay differential equations and applications, Springer, pp 539–578

  • Beretta E, Hara T, Ma W, Takeuchi Y (2001) Global asymptotic stability of an SIR epidemic model with distributed time delay. Nonlinear Anal 47: 4107–4115

    Article  MathSciNet  MATH  Google Scholar 

  • Beretta E, Takeuchi Y (1995) Global stability of an SIR model with time delays. J Math Biol 33: 250–260

    Article  MathSciNet  MATH  Google Scholar 

  • Blyuss KB, Kyrychko YN (2010) Stability and bifurcations in an epidemic model with varying immunity period. Bull Math Biol 72: 490–505

    Article  MathSciNet  MATH  Google Scholar 

  • Cooke KL, van den Driessche P (1996) Analysis of an SEIRS epidemic model with two delays. J Math Biol 35: 240–260

    Article  MathSciNet  MATH  Google Scholar 

  • Cooke KL, van den Driessche P, Zou X (1999) Interaction of maturation delay and nolinear birth in population and epidemic models. J Math Biol 39: 332–352

    Article  MathSciNet  MATH  Google Scholar 

  • Cooke KL (1979) Stability analysis for a vector disease model. Rocky Mt J Math 7: 253–263

    Google Scholar 

  • EI-Owaidy HM, Moniem AA (2004) Global asymptotic behavior of a chemostat model with delayed response in growth. J Math Anal Appl 147: 147–161

    Google Scholar 

  • Feng Z, Thieme HR (2000) Endemic models with arbitrarily distributed periods of infection I: fundamental properties of the model. SIAM J Appl Math 61: 803–833

    Article  MathSciNet  MATH  Google Scholar 

  • Feng Z, Thieme HR (2000) Endemic models with arbitrarily distributed periods of infection II: fast disease dynamics and permanent recovery. SIAM J Appl Math 61: 983–1012

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote HW, van den Driessche P (1991) Some epidemiological models with nonlinear incidence. J Math Biol 29: 271–287

    Article  MathSciNet  MATH  Google Scholar 

  • Huang G, Takeuchi Y, Ma W, Wei D (2010) Global Stability for delay SIR and SEIR epidemic models with nonlinear incidence rate. Bull Math Biol 72: 1192–1207

    Article  MathSciNet  MATH  Google Scholar 

  • Huang G, Takeuchi Y, Ma W (2010) Lyapunov functionals for delay differential equations model for viral infections. SIAM J Appl Math 70: 2693–2708

    Article  MathSciNet  MATH  Google Scholar 

  • Korobeinikov A, Maini PK (2004) A lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math Biosci Eng 1: 57–60

    MathSciNet  MATH  Google Scholar 

  • Korobeinikov A (2004) Global properties of basic virus dynamics models. Bull Math Biol 66: 879–883

    Article  MathSciNet  Google Scholar 

  • Korobeinikov A, Maini PK (2005) Nonliear incidence and stability of infectious disease models. Math Med Biol 22: 113–128

    Article  MATH  Google Scholar 

  • Korobeinikov A (2006) Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull Math Biol 68: 615–626

    Article  MathSciNet  Google Scholar 

  • Korobeinikov A (2007) Global properties of infectious disease models with nonlinear incidence. Bull Math Biol 69: 1871–1886

    Article  MathSciNet  MATH  Google Scholar 

  • Korobeinikov A (2009) Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence, and non-linear incidence rate. Math Med Biol 26: 225–239

    Article  MathSciNet  MATH  Google Scholar 

  • Kuang Y (1993) Delay differential equations with applications in population dynamics. Academics Press, Boston

    MATH  Google Scholar 

  • Kyrychko YN, Blyuss KB (2005) Global properties of a delay SIR model with temporary immunity and nonlinear incidence rate. Nonlinear Anal RWA 6: 495–507

    Article  MathSciNet  MATH  Google Scholar 

  • Liu WM, Levin SA, Iwasa Y (1986) Influence of nonlinear rates upon the behavior of SIRS epidemiological models. J Math Biol 23: 187–204

    Article  MathSciNet  MATH  Google Scholar 

  • Liu WM, Hethcote HW, Levin SA (1987) Dynamics behavior of epidemiological models with nonlinear incidence rates. J Math Biol 25: 359–380

    Article  MathSciNet  MATH  Google Scholar 

  • Magal P, McCluskey CC, Webb GF (2010) Lyapunov functional and global asymptotic stability for an infection-age model. Appl Anal 89: 1109–1140

    Article  MathSciNet  MATH  Google Scholar 

  • McCluskey CC (2009) Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Math Biosci Eng 6: 603–610

    Article  MathSciNet  MATH  Google Scholar 

  • McCluskey CC (2010) Complete global stability for an SIR epidemic model with delay-distributed or discrete. Nonlinear Anal RWA 11: 55–59

    Article  MathSciNet  MATH  Google Scholar 

  • McCluskey CC (2010) Global stability for an SIR epidemic model with delay and nonlinear incidence. Nonlinear Anal RWA 11: 3106–3109

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson P, Perelson A (2002) Mathematical analysis of delay differential equation models of HIV-1 infection. Math Biosci 179: 73–94

    Article  MathSciNet  MATH  Google Scholar 

  • Ruan S, Wang W (2003) Dynamical behavior of an epidemic model with a nonlinear incidence rate. J Differ Equ 188: 135–163

    Article  MathSciNet  MATH  Google Scholar 

  • van den Driessche P (1994) Some epidemiological models with delays, In: Martelli M, Cooke K, Cumberbatch E, Tang R, Thieme H (eds) Differential equations and applications to biology and to industry, World Scientific, pp 507–520

  • Wang L, Wolkowicz GSK (2006) A delayed chemostat model with general nonmonotone response functions and differential removal rates. J Math Anal Appl 321: 452–468

    Article  MathSciNet  MATH  Google Scholar 

  • Xu R, Ma Z (2009) Global stability of a SIR epidemic model with nonlinear incidence rate and time delay. Nonlinear Anal RWA 10: 3175–3189

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu H, Zuo X (2008) Impact of delays in cell infection and virus production on HIV-1 dynamics. Math Med Biol 25: 99–112

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Takeuchi.

Additional information

This research was supported by the Grand-in-Aid for Scientific Research (C) No. 22540122, Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, G., Takeuchi, Y. Global analysis on delay epidemiological dynamic models with nonlinear incidence. J. Math. Biol. 63, 125–139 (2011). https://doi.org/10.1007/s00285-010-0368-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-010-0368-2

Keywords

Mathematics Subject Classification (2000)

Navigation