Skip to main content
Log in

Non-lane-discipline-based car-following model considering the effect of visual angle

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study proposes a new car-following (CF) model considering the effect of visual angle under the non-lane-discipline environment. In particular, a car-following model is proposed to capture the impacts from the visual angle of the driver between the following vehicle and the preceding vehicle as well as its change rate on a road without lane discipline. Stability analysis of the proposed CF model is performed using the perturbation method to obtain the stability condition. Numerical experiments analyze three scenarios: start process, stop process, and evolution process for lane-discipline-based FVD model, non-lane-discipline-based CF model with lateral gap, and the proposed model, respectively. Results from numerical experiments illustrate that the proposed CF model that considers the effects of both lateral gap and visual angle has larger stable region compared with FVD model and the NLBCF model. Also, the responsiveness and smoothness of the proposed CF model is improved with respect to the velocity, and acceleration or deceleration profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wilson, R., Ward, J.: Car-following models: fifty years of linear stability analysis-a mathematical perspective. Transp. Plan. Technol. 34(1), 3–18 (2011)

    Article  Google Scholar 

  2. Li, Y., Sun, D.: Microscopic car-following model for the traffic flow: the state of the art. J. Control Theory Appl. 10(2), 133–143 (2012)

    Article  MathSciNet  Google Scholar 

  3. Saifuzzaman, M., Zheng, Z.: Incorporating human-factors in car-following models: a review of recent developments and research needs. Transp. Res. C 48, 379–403 (2014)

    Article  Google Scholar 

  4. Li, Y., Yang, B., Zheng, T., Li, Y., Cui, M., Peeta, S.: Extended-state-observer-based double loop integral sliding mode control of electronic throttle valve. IEEE Trans. Intell. Transp. Syst. 16, 2501–2510 (2015)

    Article  Google Scholar 

  5. Li, Y., Li, K., Zheng, T., Hu, X., Feng, H., Li, Y.: Evaluating the performance of vehicular platoon control under different network topologies of initial states. Phys. A 450, 359–368 (2016)

    Article  MathSciNet  Google Scholar 

  6. Ouyang, M., Zhao, L., Hong, L., Pan, Z.: Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability. Reliab. Eng. Syst. Saf. 123, 38–46 (2014)

    Article  Google Scholar 

  7. Hong, L., Ouyang, M., Peeta, S., He, X., Yan, Y.: Vulnerability assessment and mitigation for the Chinese railway system under floods. Reliab. Eng. Syst. Saf. 137, 58–68 (2015)

    Article  Google Scholar 

  8. Li, Y., Zhang, L., Zheng, T., Li, Y.: Lattice hydrodynamic model based delay feedback control of vehicular traffic flow considering the effects of density change rate difference. Commun. Nonlinear Sci. Numer. Simul. 29(1–3), 224–232 (2015)

    Article  MathSciNet  Google Scholar 

  9. Gazis, D., Herman, R., Rothery, R.: Nonlinear follow the leader models of traffic flow. Oper. Res. 9(4), 545–567 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gipps, P.: A behavioral car-following model for computer simulation. Transp. Res. B 15(2), 105–111 (1981)

    Article  Google Scholar 

  11. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamics model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035–1042 (1995)

    Article  MATH  Google Scholar 

  12. Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58, 133–138 (1998)

    Article  Google Scholar 

  13. Jiang, R., Wu, Q., Zhu, Z.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101–017105 (2001)

    Article  Google Scholar 

  14. Sun, D., Li, Y., Tian, C.: Car-following model based on the information of multiple ahead and velocity difference. Syst. Eng. Theory Pract. 30(7), 1326–1332 (2010)

    MathSciNet  Google Scholar 

  15. Zhao, X., Gao, Z.: A new car-following model: full velocity and acceleration difference model. Eur. Phys. J. B 47(1), 145–150 (2005)

    Article  Google Scholar 

  16. Wang, T., Gao, Z., Zhao, X.: Multiple velocity difference model and its stability analysis. Acta Phys. Sin. 55, 634–640 (2006)

    Google Scholar 

  17. Li, Y., Sun, D., Liu, W., Zhang, M., Zhao, M., Liao, X., Tang, L.: Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference. Nonlinear Dyn. 66(1), 15–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tang, T., Wang, Y., Yang, X., Wu, Y.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70(2), 1397–1405 (2012)

    Article  MathSciNet  Google Scholar 

  19. Tang, T., Shi, W., Shang, H., Wang, Y.: A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn. 76, 2017–2023 (2014)

    Article  Google Scholar 

  20. Tang, T., Wang, Y., Yang, X., Huang, H.: A multilane traffic flow model accounting for lane width, lane-changing and the number of lanes. Netw. Spat. Econ. 14, 465–483 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang, T., He, J., Yang, S., Shang, H.: A car-following model accounting for the driver’s attribution. Phys. A 413, 583–591 (2014)

    Article  Google Scholar 

  22. Tang, T., Chen, L., Yang, S., Shang, H.: An extended car-following model with consideration of the electric vehicle’s driving range. Phys. A 430, 148–155 (2015)

    Article  Google Scholar 

  23. Yu, S., Shi, Z.: Analysis of car-following behaviors considering the green signal countdown device. Nonlinear Dyn. 82(1–2), 731–740 (2015)

    Article  Google Scholar 

  24. Delpiano, R., Laval, J., Coeymans, J., Herrera, J.: The kinematic wave model with finite decelerations: a social force car-following model approximation. Transp. Res. B 71, 182–193 (2015)

    Article  Google Scholar 

  25. Tang, T., Shi, W., Shang, H., Wang, Y.: An extended car-following model with consideration of the reliability of inter-vehicle communication. Measurement 58, 286–293 (2014)

    Article  Google Scholar 

  26. Yu, S., Shi, Z.: An extended car-following model considering relative velocity fluctuation. Commun. Nonlinear Sci. Numer. Simul. 36, 319–326 (2016)

    Article  Google Scholar 

  27. Yu, S., Shi, Z.: Dynamics of connected cruise control systems considering velocity changes with memory feedback. Measurement 64, 34–48 (2015)

    Article  Google Scholar 

  28. Yu, S., Shi, Z.: An extended car-following model at signalized intersections. Phys. A 407, 152–159 (2014)

    Article  MathSciNet  Google Scholar 

  29. Ge, J., Orosz, G.: Dynamics of connected vehicle systems with delayed acceleration feedback. Transp. Res. C 46, 46–64 (2014)

    Article  Google Scholar 

  30. Yu, S., Shi, Z.: The effects of vehicular gap changes with memory on traffic flow in cooperative adaptive cruise control strategy. Phys. A 428, 206–223 (2015)

    Article  Google Scholar 

  31. Yu, S., Liu, Q., Li, X.: Full velocity difference and acceleration model for a car-following theory. Commun. Nonlinear Sci. Numer. Simul. 18, 1229–1234 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805–1824 (2000)

    Article  MATH  Google Scholar 

  33. Kikuchi, C., Chakroborty, P.: Car following model based on a fuzzy inference system. Transp. Res. Rec. 1365, 82–91 (1992)

    Google Scholar 

  34. Michaels, R.: Perceptual factors in car following. In: Proceedings of the Second International Symposium on the Theory of Road Traffic Flow, pp. 44–59. London (1963)

  35. Wolfram, O.: Theory and application of cellular automata. In: Proceedings of World Scientific, Singapore (1986)

  36. Biham, O., Middleton, A., Levine, D.: Self-organization and a dynamical transition in traffic-flow models. Phys. Rev. A 46(10), 6124–6127 (1992)

    Article  Google Scholar 

  37. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. 2(12), 2221–2229 (1992)

    Google Scholar 

  38. Chandra, S., Kumar, U.: Effect of lane width on capacity under mixed traffic conditions in India. J. Transp. Eng. 129(2), 155–160 (2003)

    Article  Google Scholar 

  39. Gunay, B.: Car following theory with lateral discomfort. Transp. Res. B 41(7), 722–735 (2007)

    Article  Google Scholar 

  40. Jin, S., Wang, D., Tao, P., Li, P.: Non-lane-based full velocity difference car following model. Phys. A 389(21), 4654–4662 (2010)

    Article  Google Scholar 

  41. Li, Y., Zhang, L., Peeta, S., Pan, H., Zheng, T., Li, Y., He, X.: Non-lane-discipline-based car-following model considering the effects of two-sided lateral gaps. Nonlinear Dyn. 80(1–2), 227–238 (2015)

    Article  MATH  Google Scholar 

  42. Li, Y., Zhang, L., Zheng, H., He, X., Peeta, S., Zheng, T., Li, Y.: Evaluating the energy consumption of electric vehicles based on car-following model under non-lane discipline. Nonlinear Dyn. 82(1), 1–13 (2015)

    Google Scholar 

  43. Anderson, G., Suner, C., Sardpour, A.: Visual information for car following by drivers: role of scene information. Transp. Res. Rec. J. Transp. Res. Board 1899(1), 104–108 (2004)

    Article  Google Scholar 

  44. Anderson, G., Sauer, C.: Optical information for car following: the driving by visual angle model. Hum. Factors 49(5), 878–896 (2007)

    Article  Google Scholar 

  45. Zhou, J.: An extended visual angle model for car-following theory. Nonlinear Dyn. 81(1), 549–560 (2015)

    Article  Google Scholar 

  46. Jin, S., Wang, D., Yang, X.: Non-lane-based car-following model with visual angle information. Transp. Res. Rec. J. Transp. Res. Board 2249, 7–14 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is jointly supported by the National Natural Science Foundation of China under Grant 61304197, the Scientific and Technological Talents of Chongqing under Grant cstc2014kjrc-qnrc30002, the Key Project of Application and Development of Chongqing under Grant No. cstc2014yykfB40001, Wenfeng Talents of CQUPT, 151 Science and Technology Major Project of Chongqing-General Design and Innovative Capability of Full Information based Traffic Guidance and Control System under Grant No. cstc2013jcsfzdzxqqX0003, the Natural Science Funds of Chongqing under Grant No. cstc2014jcyjA60003, and the Doctoral Start-up Funds of CQUPT under Grant No. A2012-26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, L., Zhang, B. et al. Non-lane-discipline-based car-following model considering the effect of visual angle. Nonlinear Dyn 85, 1901–1912 (2016). https://doi.org/10.1007/s11071-016-2803-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2803-4

Keywords

Navigation