Skip to main content
Log in

Behaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Augmented Lagrangian methods represent an efficient way to carry out the forward-dynamics simulation of mechanical systems. These algorithms introduce the constraint forces in the dynamic equations of the system through a set of multipliers. While most of these formalisms were obtained using Lagrange’s equations as starting point, a number of them have been derived from Hamilton’s canonical equations. Besides being efficient, they are generally considered to be robust, which makes them especially suitable for the simulation of systems with discontinuities and impacts. In this work, we have focused on the simulation of mechanical assemblies that undergo singular configurations. First, some sources of numerical difficulties in the proximity of singular configurations were identified and discussed. Afterwards, several augmented Lagrangian and Hamiltonian formulations were compared in terms of their robustness during the forward-dynamics simulation of two benchmark problems. Newton–Raphson iterative schemes were developed for these formulations with the Newmark formula as numerical integrator. These outperformed fixed point iteration approaches in terms of robustness and efficiency. The effect of the formulation parameters on simulation performance was also assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972). doi:10.1016/0045-7825(72)90018-7

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayo, E., Avello, A.: Singularity-free augmented Lagrangian algorithms for constrained multibody dynamics. Nonlinear Dyn. 5(2), 209–231 (1994). doi:10.1007/BF00045677

    Google Scholar 

  3. Bayo, E., García de Jalón, J., Avello, A., Cuadrado, J.: An efficient computational method for real time multibody dynamic simulation in fully Cartesian coordinates. Comput. Methods Appl. Mech. Eng. 92, 377–395 (1991). doi:10.1016/0045-7825(91)90023-Y

    Article  MATH  Google Scholar 

  4. Bayo, E., García de Jalón, J., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng. 71(2), 183–195 (1988). doi:10.1016/0045-7825(88)90085-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Bayo, E., Jiménez, J.M., Serna, M.A., Bastero, J.M.: Penalty based Hamiltonian equations for the dynamic analysis of constrained mechanical systems. Mech. Mach. Theory 29(5), 725–737 (1994). doi:10.1016/0094-114X(94)90114-7

    Article  Google Scholar 

  6. Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dyn. 9(1–2), 113–130 (1996). doi:10.1007/BF01833296

    Article  MathSciNet  Google Scholar 

  7. Blajer, W.: An orthonormal tangent space method for constrained multibody systems. Comput. Methods Appl. Mech. Eng. 121(1–4), 45–57 (1995). doi:10.1016/0045-7825(94)00682-D

    Article  MathSciNet  MATH  Google Scholar 

  8. Blajer, W.: A geometrical interpretation and uniform matrix formulation of multibody system dynamics. Zeitschrift fur Angewandte Mathematik und Mechanik 81(4), 247–259 (2001). doi:10.1002/1521-4001(200104)81:4<247:AID-ZAMM247>3.0.CO;2-D

  9. Blajer, W.: Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy. Multibody Sys. Dyn. 8(2), 141–159 (2002). doi:10.1023/A:1019581227898

    Article  MATH  Google Scholar 

  10. Cuadrado, J., Cardenal, J., Bayo, E.: Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody Sys. Dyn. 1(3), 259–280 (1997). doi:10.1023/A:1009754006096

    Article  MathSciNet  MATH  Google Scholar 

  11. Cuadrado, J., Cardenal, J., Morer, P., Bayo, E.: Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environments. Multibody Sys. Dyn. 4(1), 55–73 (2000). doi:10.1023/A:1009824327480

    Article  MATH  Google Scholar 

  12. Dopico, D., González, F., Cuadrado, J., Kövecses, J.: Determination of holonomic and nonholonomic constraint reactions in an index-3 augmented Lagrangian formulation with velocity and acceleration projections. J. Comput. Nonlinear Dyn. 9(4), 041006 (2014). doi:10.1115/1.4027671

    Article  Google Scholar 

  13. Dopico, D., Luaces, A., González, M., Cuadrado, J.: Dealing with multiple contacts in a human-in-the-loop application. Multibody Sys. Dyn. 25(2), 167–183 (2011). doi:10.1007/s11044-010-9230-y

    Article  MathSciNet  Google Scholar 

  14. Featherstone, R.: A divide-and-conquer articulated-body algorithm for parallel O(log(n)) calculation of rigid-body dynamics. Part 1: basic algorithm. Int. J. Robot. Res. 18, 867–875 (1999). doi:10.1177/02783649922066619

    Article  Google Scholar 

  15. Flores, P., Machado, M., Seabra, E., Tavares da Silva, M.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011019 (2011). doi:10.1115/1.4002338

    Article  Google Scholar 

  16. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1980)

    MATH  Google Scholar 

  17. González, F., Kövecses, J.: Use of penalty formulations in dynamic simulation and analysis of redundantly constrained multibody systems. Multibody Sys. Dyn. 29(1), 57–76 (2013). doi:10.1007/s11044-012-9322-y

    Article  MathSciNet  Google Scholar 

  18. González, F., Naya, M.A., Luaces, A., González, M.: On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics. Multibody Sys. Dyn. 25(4), 461–483 (2011). doi:10.1007/s11044-010-9234-7

    Article  MATH  Google Scholar 

  19. González, M., Dopico, D., Lugrís, U., Cuadrado, J.: A benchmarking system for MBS simulation software: problem standardization and performance measurement. Multibody Sys. Dyn. 16(2), 179–190 (2006). doi:10.1007/s11044-006-9020-8

    Article  MATH  Google Scholar 

  20. González, M., González, F., Dopico, D., Luaces, A.: On the effect of linear algebra implementations in real-time multibody system dynamics. Comput. Mech. 41(4), 607–615 (2008). doi:10.1007/s00466-007-0218-2

    Article  MATH  Google Scholar 

  21. IFToMM Technical Committee for Multibody Dynamics: Library of computational benchmark problems (2015). http://www.iftomm-multibody.org/benchmark

  22. García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, Berlin (1994)

    Book  Google Scholar 

  23. García de Jalón, J., Gutiérrez-López, M.D.: Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces. Multibody Sys. Dyn. 30(3), 311–341 (2013). doi:10.1007/s11044-013-9358-7

    Article  MathSciNet  MATH  Google Scholar 

  24. Kövecses, J.: Dynamics of mechanical systems and the generalized free-body diagram—part I: general formulation. J. Appl. Mech. 75(6), 061012 (2008). doi:10.1115/1.2965372

    Article  Google Scholar 

  25. Malczyk, P., Fraczek, J.: A divide and conquer algorithm for constrained multibody system dynamics based on augmented Lagrangian method with projections-based error correction. Nonlinear Dyn. 70(1), 871–889 (2012). doi:10.1007/s11071-012-0503-2

    Article  MathSciNet  Google Scholar 

  26. Malczyk, P., Fraczek, J., Chadaj, K.: A parallel algorithm for multi-rigid body system dynamics based on the Hamilton’s canonical equations. In: Kim, S.S., Choi, J.H. (eds.) Proceedings of the 3rd Joint International Conference on Multibody System Dynamics. Busan, Korea (2014)

    Google Scholar 

  27. Naudet, J., Lefeber, D., Daerden, F., Terze, Z.: Forward dynamics of open-loop multibody mechanisms using an efficient recursive algorithm based on canonical momenta. Multibody Sys. Dyn. 10(1), 45–59 (2003). doi:10.1023/A:1024509904612

  28. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. ASCE 85(EM3), 67–94 (1959)

    Google Scholar 

  29. Ruzzeh, B., Kövecses, J.: A penalty formulation for dynamics analysis of redundant mechanical systems. J. Comput. Nonlinear Dyn. 6(2), 021008 (2011). doi:10.1115/1.4002510

    Article  Google Scholar 

Download references

Acknowledgments

The first author would like to acknowledge the support of the Spanish Ministry of Economy through its postdoctoral research program Juan de la Cierva, contract No. JCI-2012-12376.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, F., Dopico, D., Pastorino, R. et al. Behaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurations. Nonlinear Dyn 85, 1491–1508 (2016). https://doi.org/10.1007/s11071-016-2774-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2774-5

Keywords

Navigation