Skip to main content

Advertisement

Log in

Energy analysis and trajectory design for low-energy escaping orbit in Earth–Moon system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Due to the limits of size and weight of probes, analysis and design of the low-energy escaping orbit play a significant role in saving the energy in space exploration. In this paper, we research the mechanism of the evolution of the probe orbital energy and develop a design method for the low-energy escaping orbits in the Earth–Moon system. A dynamic model accounting for the Sun–Earth–Moon-probe elliptical four-body problem is presented by considering Moon’s eccentricity and Sun’s direct gravitational influence. Considering the influences from phase of Earth, Moon and Sun, the equations of the probe orbital energy and its variation are derived and theoretical analysis is implemented based on corresponding energy expressions. Then, the Poincaré mapping technique is utilized to search two types of low-energy families of escaping orbits and the results of numerical simulation confirm the theoretical predictions. The dynamic model proposed in this paper is more accurate and has practical value comparing with the circular restricted three-body problem, and the escaping strategy can save over 25 % of energy relative to the hyperbolic escaping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Landau, D., Strange, N.: Near-earth asteroids accessible to human exploration with high-power electric propulsion. Adv. Astronaut. Sci. 142, 635–654 (2012)

    Google Scholar 

  2. Crawford, I.A., Anand, M., Cockell, C.S., Falcke, H., Green, D.A., Jaumann, R., Wieczorek, M.A.: Back to the Moon: the scientific rationale for resuming lunar surface exploration. Planet. Space Sci. 74(1), 3–14 (2012). doi:10.1016/j.pss.2012.06.002

    Article  Google Scholar 

  3. Pavlak, T.A., Howell, K.C.: Evolution of the out-of-plane amplitude for quasi-periodic trajectories in the Earth–Moon system. Acta Astronaut. 81(2), 456–465 (2012). doi:10.1016/j.actaastro.2012.07.025

    Article  Google Scholar 

  4. Ivashkin, V.V.: On particle’s trajectories of moon-to-earth space flights with the gravitational escape from the lunar attraction. Dokl. Phys. 49(9), 539–542 (2004). doi:10.1134/1.1810582

    Article  Google Scholar 

  5. Parker, J.S., Anderson, R.L.: Targeting low-energy transfers to low lunar orbit. Acta Astronaut. 84, 1–14 (2013). doi:10.1016/j.actaastro.2012.10.033

    Article  Google Scholar 

  6. Robinson, M.S., Plescia, J.B., Jolliff, B.L., Lawrence, S.J.: Soviet lunar sample return missions: landing site identification and geologic context. Planet. Space Sci. 69(1), 76–88 (2012). doi:10.1016/j.pss.2012.03.013

    Article  Google Scholar 

  7. Haase, I., Oberst, J., Scholten, F., Wahlisch, M., Glaser, P., Karachevtseva, I., Robinson, M.S.: Mapping the Apollo 17 landing site area based on lunar reconnaissance orbiter camera images and Apollo surface photography. J. Geophys. Res. Planet. 117 (2012). doi:10.1029/2011je003908

  8. Belbruno, E.A., Miller, J.K.: Sun-perturbed Earth-to-Moon transfers with ballistic capture. J. Guid. Control Dyn. 16(4), 770–775 (1993). doi:10.2514/3.21079

    Article  Google Scholar 

  9. Belbruno, E., Gidea, M., Topputo, F.: WEAK STABILITY BOUNDARY AND INVARIANT MANIFOLDS. SIAM J. Appl. Dyn. Syst. 9(3), 1061–1089 (2010). doi:10.1137/090780638

    Article  MathSciNet  MATH  Google Scholar 

  10. Uesugi, K.: Results of the MUSES-A “HITEN” mission. Missions Moon Explor. Cold Universe 18(11), 69–72 (1996). doi:10.1016/0273-1177(96)00090-7

    Google Scholar 

  11. Circi, C.: Lunar base for Mars missions. J. Guid. Control Dyn. 28(2), 372–374 (2005). doi:10.2514/1.12218

    Article  Google Scholar 

  12. Ivashkin, V.V.: Low energy trajectories for the Moon-to-Earth space flight. J. Earth Syst. Sci. 114(6), 613–618 (2005). doi:10.1007/Bf02715945

    Article  Google Scholar 

  13. Lo, M.W.: The InterPlanetary Superhighway and the origins program. In: 2002 IEEE Aerospace Conference Proceedings, vols. 1–7, pp. 3543–3562 (2002)

  14. Finocchietti, C., Pergola, P., Andrenucci, M.: Venus transfer design by combining invariant manifolds and low-thrust arcs. Acta Astronaut. 94(1), 351–362 (2014). doi:10.1016/j.actaastro.2013.03.013

    Article  Google Scholar 

  15. Ren, Y., Shan, J.J.: Low-energy lunar transfers using spatial transit orbits. Commun. Nonlinear Sci. 19(3), 554–569 (2014). doi:10.1016/j.cnsns.2013.07.020

    Article  MathSciNet  Google Scholar 

  16. Anderson, R.L., Parker, J.S.: Comparison of low-energy lunar transfer trajectories to invariant manifolds. Celest. Mech. Dyn. Astronomy 115(3), 311–331 (2013). doi:10.1007/s10569-012-9466-3

    Article  Google Scholar 

  17. Howell, K.C., Davis, D.C., Haapala, A.F.: Application of periapse maps for the design of trajectories near the smaller primary in multi-body regimes. Math Probl Eng (2012). doi:10.1155/2012/351759

  18. Villac, B.F., Scheeres, D.J.: Escaping trajectories in the Hill three-body problem and applications. J. Guid. Control Dyn. 26(2), 224–232 (2003). doi:10.2514/2.5062

    Article  Google Scholar 

  19. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the Moon. Celest. Mech. Dyn. Astronomy 81(1–2), 63–73 (2001). doi:10.1023/A:1013359120468

    Article  MathSciNet  MATH  Google Scholar 

  20. Gomez, G., Koon, W.S., Lo, W.S., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17(5), 1571–1606 (2004). doi:10.1088/0951-7715/17/5/02

    Article  MathSciNet  MATH  Google Scholar 

  21. He, W., Xu, S.J.: Study on escaping energy in circular restricted three-body problem. Acta Aeronaut. Astronaut. Sin. 28(2), 263–268 (2007)

    Google Scholar 

  22. Kolemen, E., Kasdin, N.J., Gurfil, P.: Multiple Poincar, sections method for finding the quasiperiodic orbits of the restricted three body problem. Celest. Mech. Dyn. Astronomy 112(1), 47–74 (2012). doi:10.1007/s10569-011-9383-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Paskowitz, M.E., Scheeres, D.J.: Robust capture and transfer trajectories for planetary satellite orbiters. J. Guid. Control Dyn. 29(2), 342–353 (2006). doi:10.2514/1.13761

    Article  Google Scholar 

  24. Davis, D.C., Howell, K.C.: Long-term evolution of trajectories near the smaller primary in the restricted problem. Spacefl. Mech. Pts I–III 136, 1277–1296 (2010)

  25. Haapala, A.F., Howell, K.C.: Trajectory design strategies applied to temporary comet capture including Poincar, maps and invariant manifolds. Celest. Mech. Dyn. Astronomy 116(3), 299–323 (2013). doi:10.1007/s10569-013-9490-y

    Article  MathSciNet  Google Scholar 

  26. Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Efficient invariant-manifold, low-thrust planar trajectories to the Moon. Commun. Nonlinear Sci. 17(2), 817–831 (2012). doi:10.1016/j.cnsns.2011.06.033

    Article  MathSciNet  MATH  Google Scholar 

  27. Kakoi, M., Howell, K.C., Folta, D.: Access to Mars from Earth–Moon libration point orbits: manifold and direct options. Acta Astronaut. 102, 269–286 (2014). doi:10.1016/j.actaastro.2014.06.010

    Article  Google Scholar 

  28. Wang, S., Shang, H.B., Wu, W.R.: Interplanetary transfers employing invariant manifolds and gravity assist between periodic orbits. Sci. China Technol. Sci. 56(3), 786–794 (2013). doi:10.1007/s11431-013-5133-5

    Article  Google Scholar 

  29. Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Earth-Mars transfers with ballistic escape and low-thrust capture. Celest. Mech. Dyn. Astronomy 110(2), 169–188 (2011). doi:10.1007/s10569-011-9343-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, J.R., Zhao, S.G., Yang, Y.Z.: Characteristic analysis for elliptical orbit hovering based on relative dynamics. IEEE Trans. Aerosp. Electron. Syst. 49(4), 2742–2750 (2013)

    Article  Google Scholar 

  31. Prado, A.F.B.D.: Close-approach trajectories in the elliptic restricted problem. J. Guid. Control Dyn. 20(4), 797–802 (1997). doi:10.2514/2.4115

    Article  MathSciNet  MATH  Google Scholar 

  32. Romagnoli, D., Circi, C.: Earth–Moon weak stability boundaries in the restricted three and four body problem. Celest. Mech. Dyn. Astronomy 103(1), 79–103 (2009). doi:10.1007/s10569-008-9169-y

    Article  MathSciNet  MATH  Google Scholar 

  33. Pourtakdoust, S.H., Sayanjali, M.: Fourth body gravitation effect on the resonance orbit characteristics of the restricted three-body problem. Nonlinear Dyn. 76(2), 955–972 (2014). doi:10.1007/s11071-013-1180-5

  34. Qian, Y.J., Xiao, Y.Y., Jing, W.X., Gao, C.S.: Quasi-periodic orbit design about the Earth–Moon libration point. J. Aeronaut. Astronaut. Aviat. Ser. A 45, 11 (2013)

    Google Scholar 

  35. Peng, H.J., Chen, B.S., Wu, Z.G.: Multi-objective transfer to libration-point orbits via the mixed low-thrust and invariant-manifold approach. Nonlinear Dyn. 77(1–2), 321–338 (2014). doi:10.1007/s11071-014-1296-2

    Article  MathSciNet  MATH  Google Scholar 

  36. Qian, Y.J., Hwang, I.S., Jing, W.X., Wei, J.: New dynamic model for lunar probe and its application to quasi-periodic orbit about the translunar libration point. Adv. Astronaut. Sci. 142, 753–770 (2012)

    Google Scholar 

  37. Qian, Y.J., Li, C.Y., Jing, W.X., Hwang, I., Wei, J.: Sun–Earth–Moon autonomous orbit determination for quasi-periodic orbit about the translunar libration point and its observability analysis. Aerosp. Sci. Technol. 28(1), 289–296 (2013). doi:10.1016/j.ast.2012.11.009

    Article  Google Scholar 

  38. Peng, H.J., Jiang, X., Chen, B.S.: Optimal nonlinear feedback control of spacecraft rendezvous with finite low thrust between libration orbits. Nonlinear Dyn. 76(2), 1611–1632 (2014). doi:10.1007/s11071-013-1233-9

    Article  MATH  Google Scholar 

  39. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical system, the three-body problem and space mission design. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NNSFC) through grant Nos. 11402007, 11290150, 11290152, 11290154 and 11322214. the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHRIHLB). Additional support is also appreciated through China Postdoctoral Science Foundation (Grant No. 2014M550576) and Beijing Postdoctoral Research Foundation (Grant No. 2014ZZ-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y.J., Zhang, W., Yang, X.D. et al. Energy analysis and trajectory design for low-energy escaping orbit in Earth–Moon system. Nonlinear Dyn 85, 463–478 (2016). https://doi.org/10.1007/s11071-016-2699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2699-z

Keywords

Navigation