Skip to main content
Log in

Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a dual-stage control system design method for flexible spacecraft attitude maneuvering control by use of on-off thrusters and active vibration suppression by embedded smart material as actuator. As a stepping stone, an adaptive sliding mode controller with the assumption of knowing the upper bounds of the lumped perturbation is designed that ensures exponential convergence or uniform ultimate boundedness (UUB) of the attitude control system in the presence of bounded parameter variation/disturbances and control input saturation as well. Then this adaptive controller is redesigned such that the need for knowing the upper bound in advance is eliminated. Lyapunov analysis shows that this modified adaptive controller can also guarantee the exponential convergence or UUB of the system. For actively suppressing the induced vibration, linear quadratic regulator (LQR) based positive position feedback control method is presented. Numerical simulations are performed to show that rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance torque/parameter uncertainty and saturation input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drakunov, S.V., Utkin, V.I.: Sliding mode control in dynamic systems. Int. J. Control 55, 1029–1037 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hung, J., Gao, W.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)

    Article  Google Scholar 

  3. Vadali, S.R.: Variable structure control of spacecraft large attitude maneuvers. J. Guid. Control Dyn. 9(3), 235–239 (1986)

    Article  MATH  Google Scholar 

  4. Dwyer, T.A.W., Sira-Ramirez, H.: Variable structure control of spacecraft attitude maneuver. J. Guid. Control Dyn. 11(3), 262–270 (1988)

    Article  MATH  Google Scholar 

  5. Crassidis, J.L., Markley, F.L.: Sliding mode control using modified Rodrigues parameters. J. Guid. Control Dyn. 19(6), 1381–1383 (1996)

    Article  MATH  Google Scholar 

  6. Lo, S.C., Chen, Y.P.: Smooth Sliding mode control for spacecraft attitude tracking maneuvers. J. Guid. Control Dyn. 18(6), 1345–1349 (1995)

    Article  MATH  Google Scholar 

  7. Chen, Y.P., Lo, S.C.: Sliding mode controller design for spacecraft attitude tracking maneuvers. IEEE Trans. Aerosp. Electron. 29(4), 1328–1333 (1993)

    Article  Google Scholar 

  8. Bošković, J.D., Li, S.M., Mehra, R.K.: Robust adaptive variable structure control of spacecraft under control input saturation. J. Guid. Control Dyn. 24(1), 14–22 (2001)

    Article  Google Scholar 

  9. Bošković, J.D., Li, S.M., Mehra, R.K.: Robust tracking control design for spacecraft under control input saturation. J. Guid. Control Dyn. 27(4), 627–633 (2004)

    Article  Google Scholar 

  10. Hu, Q.L., Ma, G.F.: Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerosp. Sci. Technol. 9, 307–317 (2005)

    Article  Google Scholar 

  11. Hu, Q.L., Ma, G.F.: Vibration suppression of flexible spacecraft during attitude maneuvers. J. Guid. Control Dyn. 28(2), 377–380 (2005)

    Article  Google Scholar 

  12. Hu, Q.L., Ma, G.F.: Spacecraft vibration suppression using variable structure output feedback control and smart materials. ASME J. Vib. Acoust. 128(2), 221–230 (2006)

    Article  MathSciNet  Google Scholar 

  13. Zeng, Y., Araujo, A.D., Singh, S.N.: Output feedback variable structure adaptive control of a flexible spacecraft. Acta Astronaut. 44(1), 11–22 (1999)

    Article  Google Scholar 

  14. Iyer, A., Singh, S.N.: Variable structure slewing control and vibration damping of flexible spacecraft. Acta Astronaut. 25(1), 1–9 (1991)

    Article  Google Scholar 

  15. Oz, H., Mostafa, O.: Variable structure control systems (VSCS) maneuvering of flexible spacecraft. J. Astronaut. Sci. 36(3), 311–344 (1988)

    Google Scholar 

  16. Hu, Q.L., Ma, G.F.: Control of three-axis stabilized flexible spacecrafts using variable structure strategies subject to input nonlinearities. SAGE J. Vib. Control 12(6), 659–681 (2006)

    Article  MathSciNet  Google Scholar 

  17. Tsiotras, P., Luo, J.: Control of under-actuated spacecraft with bounded inputs. Automatica 36(8), 1153–1169 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Robinett, R.D., Parker, G.D., Schaub, H., Junkins, J.L.: Lyapunov optimal saturated control for nonlinear systems. J. Guid. Control Dyn. 20(6), 1083–1088 (1997)

    Article  MATH  Google Scholar 

  19. Wallsgrove, R.J., Akella, M.R.: Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances. J. Guid. Control Dyn. 28(5), 957–963 (2005)

    Article  Google Scholar 

  20. Yakoubi, K., Chitour, Y.: Linear systems subject to input saturation and time delay: Global asymptotic stabilization. IEEE Trans. Autom. Control 52, 874–879 (2007)

    Article  MathSciNet  Google Scholar 

  21. Xu, S., Lam, J.: Robust H control for uncertain state-delayed systems with sector non-linearity. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 215, 511–520 (2001)

    Article  Google Scholar 

  22. Grimm, G., Hatfield, J., Postlethwaite, I., Teel, A.R., Turner, M.C., Zaccarian, L.: Antiwindup for stable linear systems with input saturation: an LMI-based synthesis. IEEE Trans. Autom. Control 48, 1509–1525 (2004)

    Article  MathSciNet  Google Scholar 

  23. Hanagud, S., Won, C.C., Obal, M.W.: Optimal placement of piezoelectric sensors and actuators. Am. Control Conf. 3, 1884–1889 (1988)

    Google Scholar 

  24. Lim, K.B.: Method for optimal actuator and sensor placement for large flexible structures. J. Guid. Control Dyn. 15(1), 49–57 (1992)

    Article  Google Scholar 

  25. Song, G., Kotejoshyer, B.: Vibration reduction of flexible structures during slew operations. Int. J. Acoust. Vib. 7(2), 105–109 (2002)

    Google Scholar 

  26. Fanson, J.L., Caughey, T.K.: Positive position feedback control for large structure. AIAA J. 28(4), 717–724 (1990)

    Article  Google Scholar 

  27. Shan, J.J., Liu, H.T., Sun, D.: Slewing and vibration control of a single-link flexible manipulator by positive position feedback. Mechatronics 15(4), 487–503 (2005)

    Article  Google Scholar 

  28. Bailey, T., Hubbard, J.E.: Distributed piezoelectric-polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8(5), 605–611 (1985)

    Article  MATH  Google Scholar 

  29. Tzou, H.S.: Piezoelectric Shells-Distributed Sensing and Control of Continua. Kluwer Academic, London (1993)

    Google Scholar 

  30. Won J, C.C., Sulla, L., Sparks, D.W., Belvin, W.K.: Application of piezoelectric devices to vibration suppression. J. Guid. Control Dyn. 17(6), 1333–1338 (1994)

    Article  Google Scholar 

  31. Di Gennaro, S.: Output stabilization of flexible spacecraft with active vibration suppression. IEEE Trans. Aerosp. Electron. Syst. 39(3), 747–759 (2003)

    Article  Google Scholar 

  32. Yoo, D.S., Chung, M.J.: A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties. IEEE Trans. Autom. Control 37, 159–165 (1992)

    MathSciNet  Google Scholar 

  33. Costic, B.T., Dawson, D.M., de Queiroz, M.S., Kapila, V.: Quaternion based adaptive attitude tracking controller without velocity measurements. J. Guid. Control Dyn. 24(6), 1214–1222 (2001)

    Article  Google Scholar 

  34. Tao, G.: Adaptive Control Design and Analysis. Wiley, New York (2003)

    MATH  Google Scholar 

  35. Anthony, T., Wei, B., Carroll, S.: Pulse modulated control synthesis for a spacecraft. J. Guid. Control Dyn. 13(6), 1014–1015 (1990)

    Article  Google Scholar 

  36. Friswell, M.I., Inman, D.J.: Relationship between positive position feedback and output feedback controllers. Smart Mater. Struct. 8(3), 285–291 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglei Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Q. Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits. Nonlinear Dyn 55, 301–321 (2009). https://doi.org/10.1007/s11071-008-9363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9363-1

Keywords

Navigation