Skip to main content
Log in

Almost periodic solution of a non-autonomous model of phytoplankton allelopathy

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a non-autonomous two species competitive allelopathic phytoplankton model in presence of a discrete time delay is considered. We have obtained the sufficient conditions for permanence along with existence-uniqueness of an almost periodic solution. Sufficient conditions are derived for the existence of unique almost periodic solution. Analytical findings are supported through exhaustive numerical simulations. With the help of the numerical example, we have demonstrated that initial density dependent almost periodic co-existence is possible in some situations when parameter values fail to satisfy all the conditions of permanence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gopalsamy, K., Xue-Zhong, He.: Oscillations and convergence in an almost periodic competition system. Acta Appl. Math. 46, 247–266 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Smith, J.M.: Mathematical Models in Biology. Cambridge University Press, Cambridge (1968)

    Google Scholar 

  3. Chattophadyay, J.: Effect of toxic substances on a two species competitive system. Ecol. Model. 84, 287–289 (1996)

    Article  Google Scholar 

  4. Mukhopadhyay, A., Chattophadyay, J., Tapasawi, P.K.: A delay differential equation model of plankton allelopathy. Math. Biosci. 149, 167–189 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Truscott, J.E., Brindley, J.: Ocean plankton populations as excitable media. Bull. Math. Biol. 56, 981–998 (1994)

    MATH  Google Scholar 

  6. Chattopadhyay, J., Sarkar, R.R., Mandal, S.: Toxin-producing plankton may act as a biological control for planktonic blooms-field study and mathematical modelling. J. Theor. Biol. 215, 333–344 (2002)

    Article  Google Scholar 

  7. Jang, S.R.J., Baglama, J., Rick, J.: Nutrient-phytoplankton-zooplankton models with a toxin. Math. Comput. Model. 43, 105–118 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pal, R., Basu, D., Banerjee, M.: Modelling of phytoplankton allelopathy with Monod-Haldane-type functional response—mathematical study. Biosystems 95, 243–253 (2009)

    Article  Google Scholar 

  9. Li, Z., Chen, F.: Extinction in two dimensional nonautonomous Lotka–Volterra systems with the effect of toxic substances. Appl. Math. Comput. 182, 684–690 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, F., Shi, C.: Global attractivity in an almost periodic multi-species nonlinear ecological model. Appl. Math. Comput. 180, 376–392 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xia, Y., Cao, J.: Almost periodicity in an ecological model with M-predators and N-preys by “pure-delay type” system. Nonlinear Dyn. 39, 275–304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, F., Li, Z., Chen, X., Laitochová, J.: Dynamic behaviors of a delay differential equation model of plankton allelopathy. J. Comput. Appl. Math. 206, 733–756 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Saker, S.H., Agarwal, S.: Oscillation and global attractivity in a nonlinear delay periodic model of population dynamics. Appl. Anal. 81, 787–799 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ahmad, S.: On the nonautonomous Volterra-Lotka competition equations. Proc. Am. Math. Soc. 117, 199–204 (1993)

    Article  MATH  Google Scholar 

  15. Ahmad, S.: On almost periodic solutions of the competing species problem. Proc. Am. Math. Soc. 102, 855–861 (1988)

    Article  MATH  Google Scholar 

  16. Murakami, S.: Almost periodic solutions of a system of integrodifferential equations. Tohoku Math. J. 39, 71–79 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Seifert, G.: Almost periodic solutions for delay differential equations with infinite delays. J. Differ. Equ. 41, 416–425 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huppert, A., Blasius, B., Olinky, R., Stone, L.: A model for seasonal phytoplankton blooms. J. Theor. Biol. 236, 276–290 (2005)

    Article  MathSciNet  Google Scholar 

  19. Beltrami, E., Carroll, T.O.: Modelling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol. 32, 857–863 (1994)

    Article  MATH  Google Scholar 

  20. Sarnelle, O.: Nutrient enrichment and Grazer effects on phytoplankton in lakes. Ecology 73, 551–560 (1992)

    Article  Google Scholar 

  21. Scheffer, M.: Fish and nutrients interplay determines algal biomass: a minimal model. Oikos 62, 271–282 (1991)

    Article  Google Scholar 

  22. Ruan, S.: Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling. J. Math. Biol. 31, 633–654 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Solé, J., Ladona, E.G., Estrada, M.: The role of selective predation in harmful algal blooms. J. Mar. Syst. 62, 46–54 (2006)

    Article  Google Scholar 

  24. Gakkhar, S., Negi, K.: A mathematical model for viral infection in toxin producing phytoplankton and zooplankton system. Appl. Math. Comput. 179, 301–313 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Singh, B., Chattopadhyay, J., Sinha, S.: The role of virus infection in a simple phytoplankton zooplankton system. J. Theor. Biol. 231, 153–166 (2004)

    Article  MathSciNet  Google Scholar 

  26. Ebert, U., Arrayas, M., Temme, N., Sommeijer, Huisman, J.: Critical conditions for phytoplankton blooms. Bull. Math. Biol. 63, 1095–1124 (2001)

    Article  Google Scholar 

  27. Edwards, A.M., Brindley, J.: Oscillatory behaviour in a three-component plankton population model. Dyn. Stab. Syst. 11, 347–370 (1996)

    Article  MATH  Google Scholar 

  28. Mukhopadhyay, B., Bhattacharyya, R.: Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity. Ecol. Model. 198, 163–173 (2006)

    Article  Google Scholar 

  29. Malchow, H., Petrovskii, S.V., Venturino, E.: Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Methods and Simulation. Chapman & Hall, London (2008)

    Google Scholar 

  30. Malchow, H.: Nonlinear plankton dynamics and pattern formation in an ecohydrodynamic model system. J. Mar. Syst. 7, 193–202 (1996)

    Article  Google Scholar 

  31. Malchow, H., Petrovskii, S.V., Medvinsky, A.B.: Numerical study of plankton-fish dynamics in a spatially structured and noisy environment. Ecol. Model. 149, 247–255 (2002)

    Article  Google Scholar 

  32. Sabin, G.C.W., Summer, D.: Chaos in a periodically forced predator-prey ecosystem model. Math. Biosci. 113, 91–113 (1993)

    Article  MATH  Google Scholar 

  33. Rinaldi, S., Muratori, S., Kuznetsov, Y.: Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. Bull. Math. Biol. 55, 15–35 (1993)

    MATH  Google Scholar 

  34. Gakkhar, S., Naji, R.K.: Seasonally perturbed prey-predator system with predator-dependent functional response. Chaos Solitons Fractals 18, 1075–1083 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Doveri, F., Scheffer, M., Rinaldi, S., Muratori, S., Kuznetsov, Y.: Seasonality and chaos in a plankton-fish model. Theor. Popul. Biol. 43, 159–183 (1993)

    Article  MATH  Google Scholar 

  36. Gao, M., Shi, H., Li, Z.: Chaos in a seasonally and periodically forced phytoplankton-zooplankton system. Nonlinear Anal.: Real World Appl. 10, 1643–1650 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chakraborty, S., Chatterjee, S., Venturino, E., Chattopadhyay, J.: Recurring plankton bloom dynamics modeled via toxin-producing phytoplankton. J. Biol. Phys. 33, 271–290 (2007)

    Article  Google Scholar 

  38. Besicovitch, A.S.: Almost Periodic Functions. Cambridge University Press, Cambridge (1932)

    Google Scholar 

  39. Chen, F.D.: On a nonlinear non-autonomous predator-prey model with diffusion and distributed delay. J. Comput. Appl. Math. 180(1), 33–49 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, X.H.: Almost periodic solutions for logistic equations with infinite delay. Appl. Math. Lett. 21, 113–118 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fink, A.M.: Almost Periodic Differential Equations. Lecture Notes in Math., vol. 377. Springer, Berlin (1974)

    MATH  Google Scholar 

  42. Bandyopadhyay, M.: Dynamical analysis of a allelopathic phytoplankton model. J. Biol. Syst. 14, 205–218 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbas, S., Sen, M. & Banerjee, M. Almost periodic solution of a non-autonomous model of phytoplankton allelopathy. Nonlinear Dyn 67, 203–214 (2012). https://doi.org/10.1007/s11071-011-9972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-9972-y

Keywords

Navigation