Skip to main content
Log in

Multibody dynamics simulation of planar linkages with Dahl friction

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

It is well-known that classical Coulomb dry friction model does not portrays important physical phenomena occurring in the contact between mating surfaces. Moreover, the discontinuity of force at zero velocity has many drawbacks during numerical simulations. In the attempt of exploring alternatives to Coulomb friction model, this paper presents the application of the Dahl friction model in a multibody dynamics formulation. The analysis herein presented includes also the modeling of friction forces in lower pairs and some hints on the efficient computation of Lagrange parameters during the fixed-point iteration process. Two numerical examples are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, S., Lankarani, H.M., Pereira, M.F.O.S.: Frictional impact analysis in open-loop multibody mechanical systems. ASME J. Mech. Des. 121, 119ȓ127 (1999)

    Google Scholar 

  2. Arabyan, A., Wu, F.: An improved formulation for constrained mechanical systems. Multibody Syst. Dyn. 2, 49ȓ69 (1998)

    Article  MATH  Google Scholar 

  3. Armstrong-Hélouvry, B., Dupont, P., Canudas, C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 38, 1083ȓ1138 (1994)

    Article  Google Scholar 

  4. Bagci, C.: Gross Motion Time Response Analysis of the Four-Bar Mechanism by the Method of Components with Coulomb and Viscous Damping in Pair Bearings, Linkage Design Monographs Ȕ Final Report on NSF Gk-36624 (1976)

  5. Armstrong-Hélouvry, B.: Control of Machines with Friction. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  6. Centea, D., Rahnejat, H., Menday, M.T., Non-linear multi-body dynamic analysis for the study of clutch torsional vibrations (judder). Appl. Math. Modell. (25), 177ȓ192 (2001)

  7. Cheli, F., Pennestrì, E. (eds): Kinematics and Dynamics of Multibody Systems. Casa Editrice Ambrosiana, Milano (2006) (in italian)

    Google Scholar 

  8. Dahl, P.R.: Solid friction damping in mechanical vibrations. AIAA J. 14, 1675ȓ1682 (1976)

    Article  Google Scholar 

  9. de Falco, D., Pennestrì, E., Vita, L., The Udwadia-Kalaba Formulation: A Report on its Numerical Efficiency in Multibody Dynamics Simulations and on its Teaching Effectiveness. Multibody Dynamics 2005 Ȕ ECCOMAS Thematic Conference, Madrid, Spain (2005)

  10. de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. Springer Verlag, Berlin, Heidelberg, New York (1999)

    Google Scholar 

  11. Dupont, P.E.: The effect of Coulomb friction on the existence and uniqueness of the forward dynamics problem. In: Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pp. 1442ȓ1447. Nice, France (1992)

  12. Dupont, P., Hayward, V., Armstrong-Hélouvry, B., Altpeter, F.: Single state elastoplastic friction models. IEEE Trans. Autom. Control 47(5), 787ȓ792 (2002)

    Article  Google Scholar 

  13. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. B.G. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  14. Glocker, C.: Set-Valued Force Laws: Dynamics of Non Smooth Systems. Lectures Notes in Applied and Computational Mechanics. Springer Verlag, Berlin, Heidelberg, New York (2001)

    Google Scholar 

  15. Hall, A.S.: Notes on Mechanism Analysis. Waveland Press Inc., Long Grove, IL (1986)

    Google Scholar 

  16. Han, I., Gilmore, B.J.: Multi-body impact motion with friction-analysis, simulation and experimental validation. ASME J. Mech. Des. 115, 412ȓ422 (1993)

    Article  Google Scholar 

  17. Haug, E.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston, MA (1989)

    Google Scholar 

  18. Haug, E.J., Wu, S.C., Yang, S.M.: Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion, Part I (Theory), Part II (Planar Systems). Mech. Mach. Theory 21(5), 401ȓ416 (1986)

    Article  Google Scholar 

  19. Herrmann, G.: The Graphical Statics of Mechanisms. Van Nostrand Company, New York (1900)

    Google Scholar 

  20. Ibrahim, R.A., http://www.mi.uni-koeln.de/mi/Forschung/Kuepper/friction.html

  21. Kermani, M.R., Pate, R.V.: Friction identification in robotic manipulators, case studies. In: Proceedings of the 2005 IEEE Conference on Control Applications, Toronto, Canada (2005)

  22. Klepp, H.J.: The existence and uniqueness of solutions for the pendulum with friction. J. Sound Vib. 175, 138ȓ143 (1994)

    Article  MathSciNet  Google Scholar 

  23. Klepp, H.J.: Kinetic friction locking for multi-body systems with friction. Zeitschrift für Angewandte Mathematik 46, 693ȓ708 (1995)

    MATH  MathSciNet  Google Scholar 

  24. Klepp, H.J.: The existence and uniqueness of solutions for a single-degree-of-freedom system with two friction-affected sliding joints. J. Sound Vib. 185(2), 364ȓ371 (1995)

    Article  MathSciNet  Google Scholar 

  25. Lankarani, H.M.: A poisson-based formulation for frictional impact analysis of multibody mechanical systems with open or closed kinematic chains. ASME J. Mech. Des. 122, 489ȓ497 (2000)

    Article  Google Scholar 

  26. Lenoir, Y.: Identification des modèles tribologique par pendule. C.R. Academie des Sciences, Paris, t.327, Série IIb, 1259ȓ1264 (1999)

  27. Leonard, N.E., Krishnaprasad, P.S.: Comparative Study of Friction-Compensating Control Strategies for Servomechanisms. University of Maryland Ȕ Systems Research Center, Report TR 91-88 (1991)

  28. Lindelöf, M.E.: Sur l'application de la méthode des approximations successives aux équations différentielles ordinaires du premier ordre. Comptes rendus hebdomadaires des séances de l'Académie des sciences 114, 454ȓ457 (1894)

    Google Scholar 

  29. Lorenz, H.: Lehrbuch der Technischen Physik: Erster Band: Technische Mechanik starrer Gebilde. Verlag von julius. Springer, Berlin (1924)

    Google Scholar 

  30. Nikravesh, P.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs, NJ (1988)

    Google Scholar 

  31. Oh, J. et al.: Duhem models for hysteresis in sliding and presliding friction. In: Proceedings of the 44th Conference on Decision and Control, and the European Control Conference 2005, pp. 8132ȓ8137. Seville, Spain (2005)

  32. Olsson, H., Å ström, K.J., Canudas de Wit, C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4(3), 176ȓ195 (1998)

    MATH  Google Scholar 

  33. Painlevé, P.: Leçons sur le Frottement. Cours Complémentaire del Mécanique Rationelle, Librairie Scientifique A. Hermann, Paris (1895)

    Google Scholar 

  34. Painlevé, P.: Sur le lois du frottement de glissement. Different articles with the same title appered in Comptes rendus de l'Académie des sciences 140, 702ȓ707 (1905), 141, 401ȓ405, 546ȓ552 (1906)

    MATH  Google Scholar 

  35. Paul, B.: Kinematics and Dynamics of Planar Machinery. Prentice-Hall, Englewood Cliffs, NJ (1982)

    Google Scholar 

  36. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, Hoboken, NJ (1996)

    MATH  Google Scholar 

  37. Song, P., Kraus, P., Kumar, V., Dupont, P.: Analysis of Rigid Body Dynamic Models for Simulation of Systems, Technical report, MS-CIS-00-08, University of Pennsylvania, Department of Computer Science (2000)

  38. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3ȓ39 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  39. Stronge, W.J.: Multi-body impact with friction. In: Rahnejat, H., Ebrahimi, M., Whalley, R. (eds.) Multi-body Dynamics: Monitoring and Simulation Techniques Ȕ II, pp. 15ȓ26. Professional Engineering Publishing, Suffolk, UK (2000)

  40. Threlfal D.C.: The inclusion of Coulomb friction in mechanisms programs with particular reference to DRAM. Mech. Mach. Theory 13, 475ȓ483 (1978)

    Article  Google Scholar 

  41. Turner, J.D.: On the simulation of discontinuous functions. ASME J. Appl. Mech. 68, 751ȓ757 (2001)

    Article  MATH  Google Scholar 

  42. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics Ȕ A New Approach. Cambridge University Press, Cambridge, UK (1996)

    Google Scholar 

  43. Wang, Y.P, Liao, W.H., Lee, C.L.: A state approach for dynamic analysis of sliding structures. Earthquake Eng. Struct. Dyn. 23, 790ȓ801 (2001)

    Google Scholar 

  44. Wang, Y., Mason, M.T.: Two-dimensional rigid-body collisions with friction. ASME J. Appl. Mech. 59, 635ȓ642 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pennestrì.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennestrì, E., Valentini, P.P. & Vita, L. Multibody dynamics simulation of planar linkages with Dahl friction. Multibody Syst Dyn 17, 321–347 (2007). https://doi.org/10.1007/s11044-007-9047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-007-9047-5

Keywords

Navigation