Skip to main content
Log in

Analytical study of solitons in magneto-electro-elastic circular rod

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear longitudinal wave equation, describing the propagation of optical solitons in magneto-electro-elastic circular rod, is investigated analytically. Two integration tools that are traveling wave hypothesis and G\(^{\prime }\)/G expansion scheme are recruited to extract explicit soliton solutions. The existence conditions are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Younis, M., Ali, S.: Bright, dark, and singular solitons in magneto-electro-elastic circular rod. Waves Random Complex Media. doi:10.1080/17455030.2015.1058993

  2. Xue, C.X., Pan, E., Zhang, S.Y.: Solitary waves in a magneto-electro-elastic circular rod. Smart Mater. Struct. 20, 105010 (2011)

    Article  Google Scholar 

  3. Liu, Z., Zhang, S.: Nonlinear waves and periodic solution in finite deformation elastic rod. Acta Mech. Solida Sin. 19, 1 (2006)

    Article  Google Scholar 

  4. Biswas, A.: 1-soliton solution of the generalized Zakharov–Kuznetsov modified equal width equation. Appl. Math. Lett. 22, 1775 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biswas, A., Zerrad, E.: 1-soliton solution of the Zakharov–Kuznetsov equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 14, 3574 (2009)

    Article  MATH  Google Scholar 

  6. Biswas, A.: Topological and non-topological solitons for the generalized Zakharov–Kuznetsov modified equal width equation. Int. J. Theor. Phys. 48, 2698 (2009)

    Article  MATH  Google Scholar 

  7. Biswas, A.: 1-Soliton solution of the generalized Zakharov–Kuznetsov equation with nonlinear dispersion and time-dependent coefficients. Phys. Lett. A 373, 2931 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Biswas, A., Zerrad, E., Gwanmesia, J., Khouri, R.: 1-soliton solution of the generalized Zakharov equation in plasmas by He’s variational principle. Appl. Math. Comput. 215, 4462 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biswas, A., Zerrad, E.: Solitary wave solution of the Zakharov–Kuznetsov equation in plasmas with power law nonlinearity. Nonlinear Anal. Real World Appl. 11, 3272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krishnan, E.V., Biswas, A.: Solutions to the Zakharov–Kuznetsov equation with higher order nonlinearity by mapping and ansatz methods. Phys. Wave Phenom. 18, 256 (2010)

    Article  Google Scholar 

  11. Suarez, P., Biswas, A.: Exact 1-soliton solution of the Zakharov equation in plasmas withpower law nonlinearity. Appl. Math. Comput. 217, 7372 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Matebese, B.T., Adem, A.R., Khalique, C.M., Biswas, A.: Solutions of Zakharov–Kuznetsov equation with power law nonlinearity in (1+3) dimensions. Phys. Wave Phenom. 19, 148 (2011)

    Article  Google Scholar 

  13. Johnpillai, A.G., Kara, A.H., Biswas, A.: Symmetry solutions and reductions of a class of generalized (2+1)-dimensional Zakharov–Kuznetsov Equation. Int. J. Nonlinear Sci. Numer. Simul. 12, 45 (2011)

    Article  MathSciNet  Google Scholar 

  14. Ebadi, G., Mojaver, A., Milovic, D., Johnson, S., Biswas, A.: Solitons and other solutions to the quantum Zakharov–Kuznetsov equation. Astrophys. Space Sci. 341, 507 (2012)

    Article  MATH  Google Scholar 

  15. Biswas, A., Song, M.: Soliton solution and bifurcation analysis of the Zakharov–Kuznetsov–Benjamin–Bona–Mahoney equation with power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 18, 1676 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Johnson, S., Biswas, A.: Solitons and other solutions to quantum Zakharov–Kuznetsov equation in quantum magneto-plasmas. Indian J. Phys. 87, 455 (2013)

    Article  Google Scholar 

  17. Morris, R., Kara, A.H., Biswas, A.: Soliton solution and conservation laws of the Zakharov equation in plasmas with power law nonlinearity. Nonlinear Anal. Model Control 18, 153 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Ahmed, B.S., Zerrad, E., Biswas, A.: Kinks and domain walls of the Zakharov equation in plasmas. Proc. Roman. Acad. A 14, 281 (2013)

    MathSciNet  Google Scholar 

  19. Song, M., Ahmed, B.S., Zerrad, E., Biswas, A.: Domain wall and bifurcation analysis of the Klein–Gordon Zakharov equation in (1+ 2)-dimensions with power law nonlinearity. Chaos 23, 033115 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, G.W., Xu, T.Z., Johnson, S., Biswas, A.: Solitons and Lie group analysis to an extended quantum Zakharov–Kuznetsov equation. Astrophys. Space Sci. 349, 317 (2014)

    Article  Google Scholar 

  21. Mirzazadeh, M., Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80, 387 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81, 277 (2015)

    Article  MathSciNet  Google Scholar 

  23. Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine–cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933 (2015)

    Article  MathSciNet  Google Scholar 

  24. Vega-Guzman, J., Hilal, E.M., Alshaery, A.A., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Thirring optical solitons with spatio–temporal dispersion. Proc. Roman. Acad. A 16, 41 (2015)

    MathSciNet  Google Scholar 

  25. Wang, G., Xu, T.: Optical soliton of time fractional Schrödinger equations with He’s semi-inverse method. Laser Phys. 25, 5402 (2015)

    Google Scholar 

  26. Wazwaz, A.M.: Multiple soliton solution for two integrable couplings of the modified Korteweg–de Vries equation. Proc. Roman. Acad. A 14, 219 (2013)

    MathSciNet  Google Scholar 

  27. Zhou, Q.: Optical solitons in the parabolic law media with high-order dispersion. Optik 125, 5432 (2014)

    Article  Google Scholar 

  28. Guo, R., Liu, Y.F., Hao, H.Q., Qi, F.H.: Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium. Nonlinear Dyn. 80, 1221 (2015)

    Article  MathSciNet  Google Scholar 

  29. Dai, C.Q., Zhang, J.F.: Controllable dynamical behaviors for spatiotemporal bright solitons on continuous wave background. Nonlinear Dyn. 73, 2049 (2013)

    Article  MathSciNet  Google Scholar 

  30. Zhou, Q., Yao, D., Ding, S., Zhang, Y., Chen, F., Chen, F., Liu, X.: Spatial optical solitons in fifth order and seventh order weakly nonlocal nonlinear media. Optik 124, 5683 (2013)

    Article  Google Scholar 

  31. Wang, M.L., Li, X., Zhang, J.: The G’/G-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhu, H.P.: Spatiotemporal solitons on cnoidal wave backgrounds in three media with different distributed transverse diffraction and dispersion. Nonlinear Dyn. 76, 1651 (2014)

    Article  MathSciNet  Google Scholar 

  33. Zhong, W.P., Belić, M.: Breather solutions of the generalized nonlinear Schrödinger equation with spatially modulated parameters and a special external potential. Eur. Phys. J. Plus 129, 1 (2014)

    Article  Google Scholar 

  34. Zhou, Q.: Analytical solutions and modulation instability analysis to the perturbed nonlinear Schrödinger equation. J. Mod. Opt. 61, 500 (2014)

    Article  Google Scholar 

  35. Zhou, Q., Yao, D., Chen, F., Li, W.: Optical solitons in gas-filled, hollow-core photonic crystal fibers with inter-modal dispersion and self-steepening. J. Mod. Opt. 60, 854 (2013)

    Article  MathSciNet  Google Scholar 

  36. Leblond, H., Triki, H., Mihalache, D.: Theoretical studies of ultrashort-soliton propagation in nonlinear optical media from a general quantum model. Rom. Rep. Phys. 65, 925 (2013)

  37. Zhou, Q., Yao, D., Xu, Q., Liu, X.: Optical soliton perturbation with time- and space-dependent dissipation (or gain) and nonlinear dispersion in Kerr and non-Kerr media. Optik 124, 2368 (2013)

    Article  Google Scholar 

  38. Huang, L.G., Liu, W.J., Huang, P., Pan, N., Lei, M.: Soliton amplification in gain medium governed by Ginzburg–Landau equation. Nonlinear Dyn. 81, 1133 (2015)

    Article  MathSciNet  Google Scholar 

  39. Kong, L.Q., Dai, C.Q.: Some discussions about variable separation of nonlinear models using Riccati equation expansion method. Nonlinear Dyn. 81, 1553 (2015)

    Article  MathSciNet  Google Scholar 

  40. Zhou, Q., Zhu, Q., Yu, H., Xiong, X.: Optical solitons in media with time-modulated nonlinearities and spatiotemporal dispersion. Nonlinear Dyn. 80, 983 (2015)

    Article  MathSciNet  Google Scholar 

  41. Zhou, Q., Liu, L., Liu, Y., Yu, H., Yao, P., Wei, C., Zhang, H.: Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion. Nonlinear Dyn. 80, 1365 (2015)

    Article  Google Scholar 

  42. Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Khan, K.R., Mahmood, M.F., Biswas, A.: Optical solitons in nonlinear directional couplers with spatio–temporal dispersion. J. Mod. Opt. 61, 441 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Hubei Province of China under Grant Number 2015CFC891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q. Analytical study of solitons in magneto-electro-elastic circular rod. Nonlinear Dyn 83, 1403–1408 (2016). https://doi.org/10.1007/s11071-015-2412-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2412-7

Keywords

Navigation