Skip to main content
Log in

Novel integral inequality approach on master–slave synchronization of chaotic delayed Lur’e systems with sampled-data feedback control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a novel approach to study the problem of master–slave synchronization for chaotic delayed Lur’e systems with sampled-data feedback control. Specifically, first, it is assumed that the sampling intervals are randomly variable but bounded. By getting the utmost out of the usable information on the actual sampling pattern and the nonlinear part condition, a newly augmented Lyapunov–Krasovskii functional is constructed via a more general delay-partition approach. Second, in order to obtain less conservative synchronization criteria, a novel integral inequality is developed by the mean of the new adjustable parameters. Third, a longer sampling period is achieved by using a double integral form of Wirtinger-based integral inequality. Finally, three numerical examples with simulations of Chua’s circuit are given to demonstrate the effectiveness and merits of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Wu, Z., Shi, P., Su, H., Chu, J.: Local synchronization of chaotic neural networks with sampled-data and saturating actuators. IEEE Trans. Cybern. 44, 2635–2645 (2014)

    Article  Google Scholar 

  2. Zhang, D., Cai, W., Wang, Q.: Mixed \(H_{\infty }\) and passivity based state estimation for fuzzy neural networks with Markovian-type estimator gain change. Neurocomputing 139, 321–327 (2014)

    Article  Google Scholar 

  3. Zhang, D., Yu, L.: Exponential state estimation for Markovian jumping neural networks with time-varying discrete and distributed delays. Neural Netw. 35, 103–111 (2012)

    Article  Google Scholar 

  4. Wu, Z., Shi, P., Su, H., Chu, J.: Sampled-data exponential synchronization of complex dynamical networks with time-varying coupling delay. IEEE Trans. Neural Netw. Learn. Syst. 24, 1177–1186 (2013)

    Article  Google Scholar 

  5. Liu, Y., Lee, S.: Improved results on sampled-data synchronization of complex dynamical networks with time-varying coupling delay. Nonlinear Dyn. 81, 931–938 (2015)

    Article  MathSciNet  Google Scholar 

  6. Shen, H., Park, J., Wu, Z., Zhang, Z.: Finite-time \(H_{\infty }\) synchronization for complex networks with semi-Markov jump topology. Commun. Nonlinear Sci. Numer. Simul. 24, 40–51 (2015)

    Article  MathSciNet  Google Scholar 

  7. Li, K., Yu, W., Ding, Y.: Successive lag synchronization on nonlinear dynamical networks via linear feedback control. Nonlinear Dyn. 80, 421–430 (2015)

    Article  MathSciNet  Google Scholar 

  8. Liu, J., Liu, S., Yuan, C.: Adaptive complex modified projective synchronization of complex chaotic (hyperchaotic) systems with uncertain complex parameters. Nonlinear Dyn. 79, 1035–1047 (2015)

    Article  MathSciNet  Google Scholar 

  9. Liu, J., Liu, S., Zhang, F.: A novel four-wing hyperchaotic complex system and its complex modified hybrid projective synchronization with different dimensions. Abstr. Appl. Anal. (2014). doi:10.1155/2014/257327

  10. Liu, J., Liu, S., Yuan, C.: Modified generalized projective synchronization of fractional-order chaotic L\(\ddot{u}\) systems. Adv. Differ. Equ. (2013). doi:10.1186/1687-1847-2013-374

  11. Liu, J.: Complex modified hybrid projective synchronization of different dimensional fractional-order complex chaos and real hyper-chaos. Entropy 16, 6195–6211 (2014)

    Article  Google Scholar 

  12. Theesar, S., Balasubramaniam, P.: Secure communication via synchronization of Lur’e systems using sampled-data controller. Circuits Syst. Signal Process. 33, 37–52 (2014)

    Article  MathSciNet  Google Scholar 

  13. Yin, C., Zhong, S., Chen, W.: Design PD controller for master–slave synchronization of chaotic Lur’e systems with sector and slope restricted nonlinearities. Commun. Nonlinear Sci. Numer. Simul. 16, 1632–1639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, T., Zhou, W., Zhao, S., Yu, W.: Robust master–slave synchronization for general uncertain delayed dynamical model based on adaptive control scheme. ISA Trans. 53, 335–340 (2014)

    Article  Google Scholar 

  15. Li, X., Rakkiyappan, R.: Impulsive controller design for exponential synchronization of chaotic neural networks with mixed delays. Commun. Nonlinear Sci. Numer. Simul. 18, 1515–1523 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, X., Song, S.: Research on synchronization of chaotic delayed neural networks with stochastic perturbation using impulsive control method. Commun. Nonlinear Sci. Numer. Simul. 19, 3892–3900 (2014)

    Article  MathSciNet  Google Scholar 

  17. He, W., Qian, F., Han, Q., Cao, J.: Synchronization error estimation and controller design for delayed Lur’e systems with parameter mismatches. IEEE Trans. Neural Netw. Learn. Syst. 23, 1551–1562 (2012)

    Article  Google Scholar 

  18. Wu, Z., Shi, P., Su, H., Lu, R.: Dissipativity-based sampled-data fuzzy control design and its application to truck–trailer system. IEEE Trans. Fuzzy Syst. (2014). doi:10.1109/TFUZZ.2014.2374192

  19. Wu, Y., Su, H., Wu, Z.: Asymptotical synchronization of chaotic Lur’e systems under time-varying sampling. Circuits Syst. Signal Process. 33, 699–712 (2014)

    Article  Google Scholar 

  20. Chen, W., Wei, D., Lu, X.: Global exponential synchronization of nonlinear time-delay Lur’e systems via delayed impulsive control. Commun. Nonlinear Sci. Numer. Simul. 19, 3298–3312 (2014)

    Article  MathSciNet  Google Scholar 

  21. Rakkiyappan, R., Dharani, S., Zhu, Q.: Synchronization of reaction–diffusion neural networks with time-varying delays via stochastic sampled-data controller. Nonlinear Dyn. 79, 485–500 (2015)

    Article  MathSciNet  Google Scholar 

  22. Ge, C., Hua, C.C., Guan, X.P.: Master–slave synchronization criteria of Lur’e systems with time-delay feedback control. Appl. Math. Comput. 244, 895–902 (2014)

    Article  MathSciNet  Google Scholar 

  23. Han, Q.: On designing time-varying delay feedback controllers for master–slave synchronization of Lur’e systems. IEEE Trans. Circuits Syst. II. Exp. Briefs 70, 1573–1583 (2012)

    Google Scholar 

  24. Qin, H., Ma, J., Jin, W., Wang, C.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57, 936–946 (2014)

    Article  Google Scholar 

  25. Qin, H., Ma, J., Wang, C., Tong, C.: Autapse-induced target wave, spiral wave in regular network of neurons. Sci. China Phys. Mech. Astron. 57, 1918–1926 (2014)

    Article  Google Scholar 

  26. Shi, K., Zhu, H., Zhong, S., Zeng, Y., Zhang, Y.: New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approach. J. Frankl. Inst. 352, 155–176 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zeng, H., Park, J., Xia, J., Xiao, S.: Improved delay-dependent stability criteria for T–S fuzzy systems with time-varying delay. Appl. Math. Comput. 235, 492–501 (2014)

    Article  MathSciNet  Google Scholar 

  28. Wu, Z., Shi, P., Su, H., Chu, J.: Sampled-data synchronization of chaotic Lur’e systems with time delays. IEEE Trans. Neural Netw. Learn. Syst. 24, 410–420 (2013)

    Article  Google Scholar 

  29. Hua, C., Ge, C., Guan, X.: Synchronization of chaotic Lur’e systems with time delays using sampled-data control. IEEE Trans. Neural Netw. Learn. Syst. (2014)

  30. Ge, C., Zhang, W., Li, W., Sun, X.: Improved stability criteria for synchronization of chaotic Lur’e systems using sampled-datacontrol. Neurocomputing 151, 215–222 (2015)

    Article  Google Scholar 

  31. Wu, Z., Shi, P., Su, H., Chu, J.: Sampled-data fuzzy control of chaotic systems based on a T–S fuzzy model. IEEE Trans. Fuzzy Syst. 22, 153–163 (2014)

    Article  Google Scholar 

  32. Wang, Z., Wu, H.: On fuzzy sampled-data control of chaotic systems via a time-dependent Lyapunov functional approach. IEEE Trans. Cybern. 45, 819–828 (2015)

    Article  Google Scholar 

  33. Wang, Z., Wu, H.: Synchronization of chaotic systems using fuzzy impulsive control. Nonlinear Dyn. 78, 729–742 (2014)

  34. Theesar, S., Banerjee, S., Balasubramaniam, P.: Synchronization of chaotic systems under sampled-data control. Nonlinear Dyn. 70, 1977–1987 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, L., Yang, Y.: On sampled-data control for stabilization of genetic regulatory networks with leakage delays. Neurocomputing 149, 1225–1231 (2015)

    Article  Google Scholar 

  36. Xiao, X., Zhou, L., Zhang, Z.: Synchronization of chaotic Lur’e systems with quantized sampled-data controller. Commun. Nonlinear Sci. Numer. Simul. 19, 2039–2047 (2014)

    Article  MathSciNet  Google Scholar 

  37. Zhang, X., Han, Q.: Event-based \(H_{\infty }\) filtering for sampled-data systems. Automatica 51, 55–69 (2015)

    Article  Google Scholar 

  38. Seuret, A.: A novel stability analysis of linear systems under asynchronous samplings. Automatica 48, 177–182 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhu, X., Chen, B., Yue, D., Wang, Y.: An improved input delay approach to stabilization of fuzzy systems under variable sampling. IEEE Trans. Fuzzy Syst. 20, 330–341 (2012)

    Article  Google Scholar 

  40. Fridmana, E., Seuret, A., Richard, J.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40, 1441–1446 (2004)

    Article  Google Scholar 

  41. Fridman, E.: A refined input delay approach to sampled-data control. Automatica 46, 421–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chen, W., Wang, Z., Lu, X.: On sampled-data control for master–slave synchronization of chaotic Lur’e systems. IEEE Trans. Circuits Syst. II. Exp. Briefs 59, 151–159 (2012)

    Google Scholar 

  43. Wu, Z., Shi, P., Su, H., Chu, J.: Stochastic synchronization of markovian jump neural networks with time-varying delay using sampled data. IEEE Trans. Cybern. 43, 1–11 (2013)

    Article  MATH  Google Scholar 

  44. Liu, Y., Lee, S.: Sampled-data synchronization of chaotic Lur’e systems with stochastic sampling. Circuits Syst. Signal Process. (2015). doi:10.1007/s00034-015-0032-6

    Google Scholar 

  45. Ge, C., Li, Z., Huang, X., Shi, C.: New globally asymptotical synchronization of chaotic systems under sampled-data controller. Nonlinear Dyn. 78, 2409–2419 (2014)

    Article  MathSciNet  Google Scholar 

  46. Zhang, C., Jiang, L., He, Y., Wu, Q., Wu, M.: Asymptotical synchronization for chaotic Lur’e systems using sampled-data control. Commun. Nonlinear Sci. Numer. Simul. 18, 2743–2751 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, C., He, Y., Wu, M.: Exponential synchronization of neural networks with time-varying mixed delays and sampled-data. Neurocomputing 74, 265–273 (2010)

    Article  Google Scholar 

  48. Wu, Z., Shi, P., Su, H., Chu, J.: Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1368–1375 (2012)

    Article  Google Scholar 

  49. Liu, Z., Yu, L., Xu, D.: Vector wirtinger-type inequality and the stability analysis of delayed neural network. Commun. Nonlinear Sci. Numer. Simul. 18, 1246–1257 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Seuret, A., Gouaisbaut, F.: Wirtinger-based integral inequality: application to time-delay systems. Automatica 49, 2860–2866 (2013)

    Article  MathSciNet  Google Scholar 

  51. Park, M., Kwon, O., Park, J., Lee, S., Chad, E.: Stability of time-delay systems via Wirtinger-based double integral inequality. Automatica 55, 204–208 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaibo Shi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

This work was supported by National Basic Research Program of China (2010CB732501), National Natural Science Foundation of China (61273015), The National Defense Pre-Research Foundation of China (Grant No. 9140A27040213DZ02001), The Fundamental Research Funds for the Central Universities (ZYGX2014J070), The Program for New Century Excellent Talents in University (NCET-10-0097).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, K., Liu, X., Zhu, H. et al. Novel integral inequality approach on master–slave synchronization of chaotic delayed Lur’e systems with sampled-data feedback control. Nonlinear Dyn 83, 1259–1274 (2016). https://doi.org/10.1007/s11071-015-2401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2401-x

Keywords

Navigation