Skip to main content
Log in

Analytical study of global bifurcations, stabilization and chaos synchronization of jerk system with multiple attractors

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to extend the recent analytical study of local bifurcations of a chaotic jerk model with multiple attractors to global bifurcations and examine the chaos synchronization problem for the case of multiple attractors and unknown system’s parameters. In particular, the different types of bifurcations of limit cycles exist in the model are explored analytically. The range of values in three-dimensional space of parameters, corresponding to each type of bifurcation, is found. A combination of time domain and frequency domain techniques, including multiple scales perturbation method and harmonic balance method, is employed in order to achieve this goal. More specifically, the study reveals that applying both multiple scales method and describing function method in a hybrid scheme enhances the accuracy of estimated critical bifurcation values as well as overcomes the problem of multiple scales method in capturing the correct values for bifurcation. Moreover, the chaos synchronization can be achieved in spite of the existence of multiple attractors. Finally, stabilization of fixed points and some periodic orbits of the system are studied using time-delayed feedback control scheme. Numerical simulations are presented so as to verify theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Han, M., Yu, P.: Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles. Springer, New York (2012)

    Book  MATH  Google Scholar 

  2. Meiss, J.D.: Differential Dynamical Systems. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  3. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  4. Stavroulakis, P.: Chaos Applications in Telecommunications. CRC Press, Boca Raton (2006)

    Google Scholar 

  5. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)

    MATH  Google Scholar 

  6. Strogatz, S.H.: NoNlinear Dynamics and Chaos with Applications to Physics. Biology, Chemistry, and Engineering. Westview Press, Boulder (2001)

    MATH  Google Scholar 

  7. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  8. Tu, P.N.V.: Dynamical Systems: An Introduction with Applications in Economics and Biology. Springer, New York (1995)

    Google Scholar 

  9. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  10. Elsonbaty, A., Hegazy, S.F., Obayya, S.S.A.: Numerical analysis of ultrafast physical random number generator using dual-channel optical chaos. Opt. Eng. 55(9), 094105 (2016)

    Article  Google Scholar 

  11. Li, C.: Cracking a hierarchical chaotic image encryption algorithm based on permutation. Sig. Process. 118, 203–210 (2016)

    Article  Google Scholar 

  12. El-Sayed, A.M.A., Nour, H.M., Elsaid, A., Matouk, A.E., Elsonbaty, A.: Dynamical behaviors, circuit realization, chaos control, and synchronization of a new fractional order hyperchaotic system. Appl. Math. Model. 40(5–6), 3516–3534 (2016)

    Article  MathSciNet  Google Scholar 

  13. El-Sayed, A.M.A., Elsonbaty, A., Elsadany, A.A., Matouk, A.E.: Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization. Int. J. Bifurcat. Chaos 26(13), 1650222 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wang, Q., Yu, S., Li, C., Lu, J., Fang, X., Guyeux, C., Bahi, J.M.: Theoretical design and FPGA-based implementation of higher dimensional digital chaotic systems. IEEE Trans. Circuits 63(3), 401–412 (2016)

    Article  MathSciNet  Google Scholar 

  15. Hong, Q., Xie, Q., Shen, Y., Wang, X.: Generating multi-double-scroll attractors via nonautonomous approach. Chaos 26(8), 083110 (2016)

    Article  MathSciNet  Google Scholar 

  16. Elsonbaty, A., Hegazy, S.F., Obayya, S.S.A.: Simultaneous suppression of time-delay signature in intensity and phase of dual-channel chaos communication. IEEE J. Quantum Electron. 51(9), 1–9 (2015)

    Article  Google Scholar 

  17. El-Sayed, A.M.A., Nour, H.M., Elsaid, A., Matouk, A.E., Elsonbaty, A.: Circuit realization, bifurcations, chaos and hyperchaos in a new 4D system. Appl. Math. Comput. 239, 333–345 (2014)

    MATH  MathSciNet  Google Scholar 

  18. Nour, H.M., Elsaid, A., Elsonbaty, A.: Circuit realization, chaos synchronization and estimation of parameters of a hyperchaotic system with unknown parameters. J. Egypt. Math. Soc. 22(3), 550–557 (2014)

    Article  Google Scholar 

  19. El-Sayed, A.M.A., Elsaid, A., Nour, H.M., Elsonbaty, A.: Synchronization of different dimensional chaotic systems with time varying parameters, disturbances and input nonlinearities. J. Appl. Anal. Comput. 4(4), 323–338 (2014)

    MATH  MathSciNet  Google Scholar 

  20. El-Sayed, A.M.A., Elsaid, A., Nour, H.M., Elsonbaty, A.: Dynamical behavior, chaos control and synchronization of a memristor-based ADVP circuit. Commun. Nonlinear Sci. Numer. Simul. 18, 148–170 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Li, C., Liu, Y., Xie, T., Chen, M.Z.Q.: Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 73(3), 2083–2089 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kocarev, L., Lian, S.: Chaos-Based Cryptography. Springer, New York (2011)

    Book  MATH  Google Scholar 

  23. Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurcat. Chaos. 20, 1567–1580 (2010)

    Article  Google Scholar 

  24. Lin, F.Y., Liu, J.M.: Chaotic radar using nonlinear laser dynamics. IEEE J. Quantum Electron. 40(6), 815–820 (2004)

    Article  Google Scholar 

  25. Lin, F.Y., Liu, J.M.: Chaotic lidar. IEEE J. Sel. Topics Quantum Electron. 10(5), 991–997 (2004)

    Article  Google Scholar 

  26. Kengne, J.: Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. Int. J. Bifurcat. Chaos 25(4), 1550052 (2015)

    Article  MathSciNet  Google Scholar 

  27. Kuznetsov, A.P., Kuznetsov, S.P., Mosekilde, E., Stankevich, N.V.: Co-existing hidden attractors in a radio-physical oscillator. J. Phys. A Math. Theor. 48, 125101 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kengne, J., Chedjou, J.C., Fonzin Fozin, T., Kyamakya, K., Kenne, G.: On the analysis of semiconductor diode based chaotic and hyperchaotic chaotic generators—a case study. Nonlinear Dyn. 77, 373–386 (2014)

    Article  MathSciNet  Google Scholar 

  29. Kengne, J., Njitacke, Z.T., Fotsin, H.B.: Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83, 751–765 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  30. Li, C.B., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurcat. Chaos 24, 1–12 (2014)

    MATH  MathSciNet  Google Scholar 

  31. Cushing, J.M., Henson, S.M., Blackburn, C.C.: Multiple mixed attractors in a competition model. J. Biol. Dyn. 1, 347–362 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kuznetsov, N.V., Leonov, G.A., Vagaitsev, V.I.: Analytical-numerical method for attractor localization of generalized Chua’s system. IFAC Proc. 4, 29–33 (2010)

    Article  Google Scholar 

  33. Kuznetsov, A.P., Kuznetsov, S.P., Stankevich, N.V.: A simple autonomous quasi-periodic self oscillator. Commun. Nonlin. Sci. Numer. Simulat. 15, 1676–1681 (2010)

    Article  Google Scholar 

  34. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Physica D 241, 1482–1486 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Doedel, E.J.: AUTO-07P: Continuation and bifurcation software for ordinary differential equations. Technical Report, Concordia University, (2007)

  36. Champneys, A.R., Kuznetsov, Y.A., Sandstede, B.: A numerical toolbox for homoclinic bifurcation analysis. Int. J. Bifurcat. Chaos 6, 867–887 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  37. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29(2), 141–164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Engelborghs, K.: DDE-BIFTOOL: a Matlab package for bifurcation analysis of delay differential equations. Technical Report TW-305, Department of Computer Science, K.U.Leuven, Leuven, Belgium (2000)

  39. Engelborghs, K., Roose, D.: Numerical computation of stability and detection of Hopf bifurcations of steady state solutions of delay differential equations. Adv. Comput. Math. 10(3–4), 271–289 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  40. Robbio, F.I., Alonso, D.M., Moiola, J.L.: Detection of limit cycle bifurcations using harmonic balance methods. Int. J. Bifurcat. Chaos 14(10), 3647–3654 (2004)

    Article  MATH  Google Scholar 

  41. Robbio, F., Moiola, J.L., Alonso, D.: On semi-analytical procedure for detecting limit cycle bifurcations. Int. J. Bifurcat. Chaos 14, 951–970 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Moiola, J. L., Chen, G.: Hopf Bifurcation Analysis A Frequency Domain Approach, World Scientific Series on Nolinear Science, Series A, Vol. 21, (1996)

  43. Belhaq, M., Freire, E., Houssni, M., Rodrıguez-Luis, A.J.: Second period-doubling in a three-dimensional system. Mech. Res. Commun. 26(2), 23–128 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. Belhaq, M., Houssni, M.: Symmetry-breaking and first period-doubling following a Hopf bifurcation in a three-dimensional system. Mech. Res. Commun. 22(3), 221–231 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  45. Ge, G., Wang, W.: The Application of the undetermined fundamental frequency method on the period-doubling bifurcation of the 3D nonlinear system. Abstr. Appl. Anal. 2013(813957), 1–6 (2013)

    MathSciNet  Google Scholar 

  46. Chen, Y.M., Liu, J.K.: A precise calculation of bifurcation points for periodic solution in nonlinear dynamical systems. Appl. Math. Comput. 273, 1190–1195 (2016)

    MathSciNet  Google Scholar 

  47. Berns, D.W., Moiola, J.L., Chen, G.R.: Detecting period doubling bifurcation: an approximate monodromy matrix approach. Automatica 37(11), 1787–1795 (2001)

    Article  MATH  Google Scholar 

  48. Chunga, K.W., Chana, C.L., Xu, C.L.: An efficient method for switchingbranches of period-doubling bifurcations of strongly non-linear autonomous oscillators with many degrees of freedom. J. Sound Vib. 267, 787–808 (2003)

    Article  Google Scholar 

  49. Sparavigna, A. C.: Jerk and Hyperjerk in a Rotating Frame of Reference. arXiv preprint arXiv:1503.07051 (2015)

  50. Sprott, J.C.: Some simple chaotic jerk functions. Am. J. Phys. 65(6), 537–543 (1997)

    Article  Google Scholar 

  51. Mehrotra, K., Mahapatra, P.R.: A jerk model for tracking highly maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 33(4), 1094–1105 (1997)

    Article  Google Scholar 

  52. Louodop, P., Kountchou, M., Fotsin, H., Bowong, S.: Practical finite-time synchronization of jerk systems: theory and experiment. Nonlinear Dyn. 78, 597–607 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  53. Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76(4), 1951–1962 (2014)

    Article  Google Scholar 

  54. Elsonbaty, A.R., El-Sayed, A.M.A.: Further nonlinear dynamical analysis of simple jerk system with multiple attractors. Nonlinear Dyn. 87, 1169–1186 (2017)

    Article  MATH  Google Scholar 

  55. Nayfeh, A.H.: The Method of Normal Forms. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2011)

    Book  MATH  Google Scholar 

  56. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1993)

    MATH  Google Scholar 

  57. Nayfeh, A.H., Balachandran, B.: Motion near a Hopf bifurcation of three-dimensional system. Mech. Res. Commun. 17(4), 191–198 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  58. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  59. Rand, R.H.: Analytical approximation for period-doubling following a Hopf bifurcation. Mech. Res. Comm. 16, 117–123 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  60. Basso, M., Genesio, R., Tesi, A.: A frequency method for predicting limit cycle bifurcations. Nonlinear Dyn. 13, 339–360 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  61. Liao, T.: Adaptive synchronization of two lorenz systems. Chaos Solitons Fractals 9, 1555–1561 (1998)

    Article  MATH  Google Scholar 

  62. Elabbasy, E.M., Agiza, H.N., El-Dessoky, M.M.: Adaptive synchronization for four-scroll attractor with fully unknown parameters. Phys. Let. A 349, 187–191 (2006)

    Article  MATH  Google Scholar 

  63. Kuznetsov, N.V., Leonov, G.A., Shumafov, M.M.: A short survey on Pyragas time-delay feedback stabilization and odd number limitation. IFAC-PapersOnLine 48(11), 706–709 (2015)

    Article  Google Scholar 

  64. Gjurchinovski, A., Sandev, T., Urumov, V.: Delayed feedback control of fractional-order chaotic systems. J. Phys. A: Math. Theor. 43, 1–17 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  65. Pyragas, K.: Continuous control of chaos by self controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    Article  Google Scholar 

  66. Pyragas, K.: Control of chaos via extended delay feedback. Phys. Lett. A 206, 323–330 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and anonymous Reviewers for providing useful comments which improve style, readability and clarity of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Elsonbaty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsonbaty, A., El-Sayed, A.M.A. Analytical study of global bifurcations, stabilization and chaos synchronization of jerk system with multiple attractors. Nonlinear Dyn 90, 2637–2655 (2017). https://doi.org/10.1007/s11071-017-3828-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3828-z

Keywords

Navigation