Skip to main content
Log in

Numerical calculations accuracy comparison of the Inverse Laplace Transform algorithms for solutions of fractional order differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the paper we present results of a numerical experiment in which we evaluate and compare some numerical algorithms of the Inverse Laplace Transform for inversion accuracy of some fractional order differential equations solutions. The algorithms represent diverse lines of approach to the subject of the numerical inversion and include methods by Stehfest, Abate and Whitt, Vlach and Singhai, De Hoog, Talbot, Zakian and a one in which the FFT is applied for Fourier series convergence acceleration. We used C++ and Python languages and applied arbitrary precision mathematical libraries to address some crucial issues of an numerical implementation. Introductory test set includes Laplace transforms which are considered as difficult to compute as well as some others commonly applied in fractional calculus. In the main part of the evaluation, there is assessed accuracy of the numerical Inverse Laplace Transform of some popular fractional differential equations solutions, e.g., the initial value problem in case of the inhomogeneous Bagley–Torvik equation and composite fractional oscillation equation. Evaluation results enable to conclude that the Talbot method which involves deformed Bromwich contour integration, the De Hoog and the Abate and Whitt methods which use Fourier series expansion with accelerated convergence provide the most accurate inversions. They can be applied to a wide variety of inversion problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. O’Flynn, M., Moriarty, E.: Linear Systems: Time Domain and Transform Analysis. Wiley, Hoboken (1987)

    MATH  Google Scholar 

  2. Cannon Jr, R.H.: Dynamics of Physical Systems. McGraw-Hill Inc, New York (1967)

    Google Scholar 

  3. Poularikas, A.D., Seely, S.: In: Poularikas, A.D. (ed.) Laplace Transforms in the Transforms and Applications Handbook, vol. 2. CRC Press LLC, Boca Raton (2000)

  4. Cohen, A.M.: Numerical Methods for Laplace Transform Inversion. Springer, Berlin (2007)

    MATH  Google Scholar 

  5. Abate, J., Choudhurry, G.L., Whitt, W.: An introduction to numerical inversion and its application to probability models. In: Grassman, W. (ed.) Computational Probability, pp. 257–323. Kluwer, Boston (1999)

    Google Scholar 

  6. Meerschaert, M.M., Schilling, R.L., Sikorskii, A.: Stochastic solutions for fractional wave equations. Nonlinear Dyn. 80(4), 1685–1695 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wu, G., Baleanu, D., Zeng, S., Deng, Z.: Discrete fractional diffusion equation. Nonlinear Dyn. 80(1–2), 281–286 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhou, Y., Ionescu, C., Tenreiro Machado, J.A.: Fractional dynamics and its applications. Nonlinear Dyn. 80(4), 1661–1664 (2015)

    Article  MathSciNet  Google Scholar 

  9. Bhrawy, A.H., Taha, T.M., Machado, J.A.T.: A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2087-0

  10. Tomovski, Z., Sandev, T.: Exact solutions for fractional diffusion equation in a bounded domain with different boundary conditions. Nonlinear Dyn. 71(4), 671–683 (2014)

    Article  MathSciNet  Google Scholar 

  11. Tenreiro Machado, J.A.: Calculation of fractional derivatives of noisy data with genetic algorithms. Nonlinear Dyn. 57(1–2), 253–260 (2009)

    Article  MATH  Google Scholar 

  12. Bhrawy, A.H., Zaky, M.A., Van Gorder, R.A.: A apace-time Legendre spectral Tau method for the two-sided space-time Caputo Fractional diffusion-wave equation. Numer. Algorithms (2015). doi:10.1007/s11075-015-9990-9

  13. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2004)

    Google Scholar 

  14. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. World Scientific Publishing Co.Pte. Ltd., Singapore (2012)

    MATH  Google Scholar 

  15. Podlubny, I.: The Laplace Transform Method for Linear Differential Equations of the Fractional Order. Slovak Academy of Sciences, Institute of Experimental Physics, Slovak (1994)

    Google Scholar 

  16. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  17. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  18. Kilbas, A.A., Srivastava, H.M., Trujillo, : Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006)

    MATH  Google Scholar 

  19. Gorenflo, R., Mainardi, R.F.: Fractional calculus: integral and differential equations of fractional order. Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien and New York (1997)

  20. Wang, Q., Zhan, H.: On different numerical inverse Laplace methods for solute transport. Adv. Water Res. 75, 80–92 (2015)

    Article  Google Scholar 

  21. Boupha, K., Jacobs, J.M., Hatfield, K.: MDL groundwater software: Laplace Transforms and the De Hoog algorithm to solve contaminant transport equations. Comput. Geosci. 30, 445–453 (2004)

    Article  Google Scholar 

  22. Sheng, H., Li, Y., Chen, Y.: Application of numerical inverse laplace transform algorithms in fractional calculus. In: Proceedings of FDA’10, the 4th IFAC Workshop Fractional Differentiation and its Applications, article no. FDA10-108 (2010)

  23. Lin, S., Lu, Ch.: Laplace transform for solving some families of fractional differential equations and its applications. Adv. Differ. Equ. (2013)

  24. Epstein, ChL, Schotland, J.: The bad truth about Laplace’s transform. SIAM Rev. 3, 504–520 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Piessens, R.: A bibliography on numerical inversion of the Laplace transform and applications. J. Comput. Appl. Math. 1(2), 115–128 (1975)

  26. Widder, D.V.: The Laplace Transform. Princeton Unviersity Press, Princeton (1946)

    MATH  Google Scholar 

  27. Cooley, J.W., Lewis, P.A.W., Welch, P.D.: The fast fourier transform algorithm: programming considerations in the calculation of sine, cosine and Laplace transform. J. Sound Vib. 12, 315–337 (1970)

    Article  MATH  Google Scholar 

  28. Huddleston, T., Byrne, P.: Numerical Inversion of Laplace Transforms. University of South Alabama, Mobile (1999)

    Google Scholar 

  29. Dubner, H., Abate, J.: Numerical inversion of Laplace transforms by relating them to the finite fourier cosine transform. J. ACM 15, 115–123 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  30. Abate, J., Whitt, W.: The Fourier-series method for inverting transforms of probability distributions. Queueing Syst. 10, 5–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Durbin, F.: Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput. J. 17(4) (1973)

  32. Honig, G., Hirdes, U.: A method for the numerical inversion of Laplace transforms. J. Comput. Appl. Math. 10, 113–132 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sakkurai, T.: Numerical inversion for Laplace transforms of functions with discontinuities. Adv. Appl. Probab. 06, 616–642 (2004)

  34. O’Cinneide, C.A.: Euler summation for fourier series and Laplace transform inversion. Stoch. Models 13, 315–337 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. De Hoog, F.R., Knight, J.H., Stokes, A.N.: An improved method for numerical inversion of Laplace transforms. SIAM J. Sci. Stat. Comput. 3(3), 357–366 (1982)

  36. Stehfest, H.: Algorithm 368: numerical inversion of Laplace transforms. Commun. ACM 13(1), 47–49 (1970)

    Article  Google Scholar 

  37. Villinger, H.: Solving cylindrical geothermal problems using Gaver–Stehfest inverse Laplace transform. Geophysics 50(10), 1581–1587 (1985)

    Article  Google Scholar 

  38. Weeks, W.: Numerical inversion of Laplace transforms using Laguerre functions. J. ACM 13(3), 419–429 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  39. Piessens, R.: New quadrature formulas for the numerical inversion of the Laplace transform. BIT 9, 351–361 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  40. Iseger, P.D.: Numerical transform inversion using Gaussian quadrature. Probab. Eng. Inf. Sci. 20, 1–44 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Davies, B.: Integral transforms inversion using Gaussian quadratures. Probab. Eng. Inf. Sci. 20, 1–44 (2006)

    Google Scholar 

  42. Talbot, A.: The accurate numerical inversion of Laplace transforms. IMA J. Appl. Math. 23(1), 163–174 (1979)

  43. Murli, A., Rizzardi, M.: Algorithm 682: Talbot’s method for the Laplace inversion. ACM Trans. Math. Softw. 16(2), 158–168 (1990)

    Article  MATH  Google Scholar 

  44. Zakian, V.: Solution of homogeneous ordinary linear differential systems by numerical inversion of Laplace transforms. Electron. Lett. 7, 546–548 (1971)

    Article  MathSciNet  Google Scholar 

  45. Vlach, J., Singhai, K.: Computer Methods for Circuit Analysis and Design. Van Nostrand Rheinhold Company, New York (1983)

  46. Abate, J., Whitt, W.: A unified framework for numerically inverting Laplace transforms. INFORMS J. Comput. 4(11), 394–405 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Abate, J., Valko, P.P.: Multi-precision Laplace transform inversion. Int. J. Numer. Methods Eng. 60, 979–993 (2004)

    Article  MATH  Google Scholar 

  48. Krougly, Z.L., Jeffrey, D.J., Tsarapkina, D.: Software implementation of numerical algorithms in arbitrary precision. In: 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (2013)

  49. Masol, V., Teugels, J.L.: Numerical accuracy of real inversion formulas for the Laplace transform. J. Comput. Appl. Math. 233, 2521–2533 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Valko, P.P., Vajda, S.: Inversion of noise-free Laplace transforms: towards a standardized set of test problems. Inverse Probl. Eng. Taylor&Francis 10(5), 467–483 (2002)

    Article  Google Scholar 

  51. Weideman, J.: Algorithms for parameter selection in the weeks method for inverting the Laplace transform. SIAM J. Sci. Comput. 21(1), 111–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. Davies, B., Martin, B.: Numerical inversion of the Laplace transform: a survey and comparison of methods. J. Comput. Phys. 33(1), 1–32 (1979)

  53. Atkinson, A.P., Lang, S.R.: A comparison of some inverse Laplace transform techniques for use in circuit design. Comput. J. 15(2), 138–139 (1971)

  54. Kuhlman, K.L.: Review of inverse Laplace transform algorithms for Laplace-space approaches. Numer. Algorithm (2012). doi:10.1007/s11075-012-9625-3

  55. Valerio, D., Trujillo, J.J., Rivero, M., Machado, J.A.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Special Topics 222, 1827–1846 (2013)

    Article  Google Scholar 

  56. Chen, Y.Q., Petras, I., Vinagre, B.: A list of laplace and inverse Laplace transforms related to fractional order calculus. http://www.tuke.sk/petras/foc_laplace.pdf

  57. Leu, J.F., Tsay, S.Y., Hwang, C.: Design of optimal fractional order PID controllers. J. Chin. Inst. Chem. Eng. 33(2), 193–202 (2002)

    Google Scholar 

  58. Kano, P., Brio, M.: C++/CUDA implementation of the weeks method for numerical Laplace inversion. Acunum Algorithms Simul (2011). http://cunum.com/yahoo_site_admin/assets/docs/README.136132230.pdf

  59. Kazem, S.: Exact soultion of some linear fractional differential equations by Laplace transform. Int. J. Nonlinear Sci. 16, 3–11 (2013)

    MathSciNet  Google Scholar 

  60. Anjara, F., Solofoniaina, J.: Solution of general fractional oscillation relaxation equation by Admian’s method. Gen. Math. Notes 20(2), 1–11 (2014)

    Google Scholar 

  61. Weideman, J.A.C.: Optimizing Talbot’s contours for the inversion of the Laplace transform. SIAM J. Anal. 44(6), 2342–2362 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research is supported by the Polish National Science Center in 2013-2015 as a research project (DEC-2012/05/B/ST 6/03647).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz W. Brzeziński.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brzeziński, D.W., Ostalczyk, P. Numerical calculations accuracy comparison of the Inverse Laplace Transform algorithms for solutions of fractional order differential equations. Nonlinear Dyn 84, 65–77 (2016). https://doi.org/10.1007/s11071-015-2225-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2225-8

Keywords

Navigation