Skip to main content
Log in

Stochastic solutions for fractional wave equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose index is one-half the order of the fractional time derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alili, L., Chaumont, L.: A new fluctuation identity for Lévy processes and some applications. Bernoulli 7, 557–569 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics. Birkhaeuser, Berlin (2001)

    Book  Google Scholar 

  3. Baeumer, B., Meerschaert, M.M., Nane, E.: Space-time duality for fractional diffusion. J. Appl. Probab. 46, 1100–1115 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baeumer, B., Kovács, M., Meerschaert, M.M., Schilling, R.L., Straka, P.: Reflected spectrally negative stable proc esses and their governing equations. Trans. Am. Math. Soc. www.stt.msu.edu/users/mcubed/duality-process (2013)

  5. Bajlekova, E.G.: Fractional evolution equations in Banach spaces. Ph.D. thesis, Eindhoven University of Technology (2001)

  6. Bazhlekova, E.: Subordination principle for fractional evolution equations. Fract. Calc. Appl. Anal. 3(3), 213–230 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  8. Bingham, N.H.: Limit theorems for occupation times of Markov processes. Z. Warsch. Verw. Geb. 17, 1–22 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bingham, N.H.: Maxima of sums of random variables and suprema of stable processes. Z. Wahrsch. Verw. Geb. 26, 273–296 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bondesson, L., Kristiansen, G., Steutel, F.: Infinite divisibility of random variables and their integer parts. Stat. Probab. Lett. 28, 271–278 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, W., Holm, S.: Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115, 1424–1430 (2004)

    Article  Google Scholar 

  12. Duck, F.A.: Physical Properties of Tissue: A Comprehensive Reference Book. Academic Press, Boston (1990)

    Google Scholar 

  13. Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27(2), 309–321 (1990)

    Google Scholar 

  14. Kelly, J.F., McGough, R.J., Meerschaert, M.M.: Analytical time-domain Green’s functions for power-law media. J. Acoust. Soc. Am. 124(5), 2861–2872 (2008)

    Google Scholar 

  15. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    Book  Google Scholar 

  16. Meerschaert, M.M., Scheffler, H.-P.: Limit theorems for continuous time random walks with infinite mean waiting times. J. Appl. Probab. 41, 623–638 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Meerschaert, M.M., Scheffler, H.-P.: Triangular array limits for continuous time random walks. Stoch. Proc. Appl. 118, 1606–1633 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2012)

  19. Meerschaert, M.M., Straka, P., Zhou, Y., McGough, R.J.: Stochastic solution to a time-fractional attenuated wave equation. Nonlinear Dyn. 70(2), 1273–1281 (2012)

    Article  MathSciNet  Google Scholar 

  20. Meerschaert, M.M., Straka, P.: Inverse stable subordinators. Math. Model. Nat. Phenom. 8(2), 1–16 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York (1994)

    MATH  Google Scholar 

  22. Szabo, T.L.: Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am. 96, 491–500 (1994)

    Article  Google Scholar 

  23. Treeby, B.E., Cox, B.T.: Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am. 127, 2741–2748 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by NIH grant R01-EB012079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Meerschaert.

Appendix

Appendix

1.1 Reflection principle

The goal of this appendix is to establish the following variation of the D. André reflection principle for Brownian motion, which may also be useful in other contexts. Since this extension is not completely standard, we include its simple proof.

Theorem 6.1

(Reflection principle) Suppose that \(Y_t\) is a Lévy process started at the origin, with no positive jumps, and let \(S_t=\sup \{Y_u:0\le u\le t\}\). Assume that \(\mathbb {P}(Y_t>0) = \mathbb {P}(Y_1 \ge 0)\), for all \(t>0\). Then,

$$\begin{aligned} \mathbb {P}(S_t\ge x)&= \mathbb {P}(Y_t\ge x \,|\, Y_t\ge 0)\nonumber \\&= \frac{\mathbb {P}(Y_t\ge x)}{\mathbb {P}(Y_t\ge 0)} \end{aligned}$$
(6.1)

for all \(t,x>0\).

Proof

Let \(\tau _x := \inf \{u>0\,:\, Y_u > x\}\) denote the first-passage time process. Since \((Y_t)_{t\ge 0}\) has stationary independent increments, it follows that \((Y_{t+\tau _x} - Y_{\tau _x})_{t\ge 0}\) is a Lévy process, which is independent of the \(\sigma \)-algebra generated by \((Y_t)_{t\le \tau _x}\), and it has the same finite-dimensional distributions as \((Y_t)_{t\ge 0}\). Consequently,

$$\begin{aligned}&\mathbb {P}\left( \tau _x\le t, Y_t < Y_{\tau _x} \right) =\mathbb {P}\left( \tau _x\le t, Y_t - Y_{\tau _x} < 0\right) \nonumber \\&\quad =\mathbb {P}\left( \tau _x\le t\right) \mathbb {P}\left( Y_1<0\right) \nonumber \\&\quad =\frac{\mathbb {P}\left( Y_1<0\right) }{\mathbb {P}\left( Y_1\ge 0\right) } \mathbb {P}\left( \tau _x\le t\right) \mathbb {P}\left( Y_1\ge 0\right) \nonumber \\&\quad =\frac{\mathbb {P}\left( Y_1<0\right) }{\mathbb {P}\left( Y_1\ge 0\right) } \mathbb {P}\left( \tau _x\le t, Y_t \ge Y_{\tau _x} \right) . \end{aligned}$$
(6.2)

Observe that we have \(\{\tau _x < t\} \subset \{S_t > x\} \subset \{\tau _x \le t\} \subset \{S_t\ge x\}\) for all \(t\) and \(x>0\). Therefore,

$$\begin{aligned}&\mathbb {P}(S_t>x) \le \mathbb {P}(\tau _x\le t) = \mathbb {P}(\tau _x\le t, Y_t\ge Y_{\tau _x}) \\&\qquad + \mathbb {P}(\tau _x\le t, Y_t < Y_{\tau _x})\\&\quad = \left( 1+ \frac{\mathbb {P}\left( Y_1<0\right) }{\mathbb {P}\left( Y_1\ge 0\right) }\right) \mathbb {P}(\tau _x\le t, Y_t\ge Y_{\tau _x})\\&\quad = \frac{1}{\mathbb {P}\left( Y_1\ge 0\right) }\,\mathbb {P}(\tau _x\le t, Y_t\ge Y_{\tau _x})\\&\quad = \frac{1}{\mathbb {P}\left( Y_t\ge 0\right) }\,\mathbb {P}(\tau _x\le t, Y_t\ge Y_{\tau _x},Y_t\ge 0)\\&\quad = \mathbb {P}(\tau _x\le t, Y_t\ge Y_{\tau _x}\,|\,Y_t\ge 0). \end{aligned}$$

On the other hand, and with similar arguments,

$$\begin{aligned}&\mathbb {P}(S_t>x) \ge \mathbb {P}(\tau _x< t) = \mathbb {P}(\tau _x < t, Y_t\ge Y_{\tau _x}) \\&\qquad + \mathbb {P}(\tau _x< t, Y_t < Y_{\tau _x})\\&\quad = \mathbb {P}(\tau _x< t, Y_t\ge Y_{\tau _x}\,|\,Y_t\ge 0)\\&\quad \ge \mathbb {P}(\tau _x< t, Y_t > Y_{\tau _x}\,|\,Y_t\ge 0). \end{aligned}$$

Therefore,

$$\begin{aligned}&\mathbb {P}(\tau _x< t, Y_t > Y_{\tau _x}\,|\,Y_t\ge 0) \le \mathbb {P}(S_t>x) \\&\quad \le \mathbb {P}(\tau _x\le t, Y_t\ge Y_{\tau _x}\,|\,Y_t\ge 0). \end{aligned}$$

Since \(Y_t\) has no upward jumps, \(Y_{\tau _x} = x\) and \(\{\tau _x < t\}\cap \{Y_t > x\} = \{Y_t > x\}\). Therefore,

$$\begin{aligned}&\mathbb {P}(Y_t > x\,|\,Y_t\ge 0) \le \mathbb {P}(S_t>x) \\&\quad \le \mathbb {P}(Y_t\ge x\,|\,Y_t\ge 0). \end{aligned}$$

We can now use standard approximation techniques:

$$\begin{aligned} \{X \ge x\}&= \bigcap _n\big \{X> x-1/n\big \} \\&= \bigcap _n\big \{X\ge x-1/n\big \} \end{aligned}$$

and

$$\begin{aligned} \{X > x\} = \bigcup _n\{X > x+1/n\} \end{aligned}$$

to get

$$\begin{aligned} \mathbb {P}(Y_t\ge x \,|\,Y_t\ge 0)&= \lim _{n\rightarrow \infty } \mathbb {P}(Y_t > x - 1/n \,|\,Y_t\ge 0)\\&\le \lim _{n\rightarrow \infty } \mathbb {P}(S_t > x - 1/n)\\&= \mathbb {P}(S_t\ge x) \end{aligned}$$

and

$$\begin{aligned} \mathbb {P}(S_t\ge x)&= \lim _{n\rightarrow \infty }\mathbb {P}(S_t > x-1/n)\\&\le \lim _{n\rightarrow \infty }\mathbb {P}(Y_t \ge x-1/n\,|\, Y_t\ge 0)\\&= \mathbb {P}(Y_t \ge x \,|\, Y_t\ge 0) \end{aligned}$$

which proves \(\mathbb {P}(S_t\ge x) = \mathbb {P}(Y_t\ge x\,|\, Y_t\ge 0)\).\(\square \)

Remark 6.2

If \((Y_t)_{t\ge 0}\) is a Brownian motion, then (6.1) becomes the classical reflection principle: \(\mathbb {P}(Y_t\ge 0)=1/2\), so that (6.1) is equivalent to \(\mathbb {P}(S_t\ge x) = 2\mathbb {P}(Y_t\ge ~x)\).

The proof of Theorem 6.1 relies essentially on local symmetry and the strong Markov property. Let \(Y_t\) be a strong Markov process with càdlàg paths and transition function \(p_t(z,\mathrm{d}y)=\mathbb {P}^z(Y_t\in \mathrm{d}y)\). Write \(\tau _x^z = \inf \{u>0\,:\, Y_u-z > x\}\) for the first passage time above the level \(x+z\) for the process \(Y_t\) started at \(z\); observe that, in general, \(Y_{\tau _x^z} \ge x+z\). We can use the strong Markov property in (6.2) to get for any starting point \(z\)

$$\begin{aligned}&\mathbb {P}^z\left( \tau _x^z\le t, Y_t < Y_{\tau _x^z} \right) =\mathbb {P}^z\left( \tau _x^z\le t, Y_t - Y_{\tau _x^z} < 0\right) \\&\quad = \int \limits _{\{ \tau _x^z\le t\}} \mathbb {P}^{Y_{\tau _x^z}(\omega )}\big (Y_{t- \tau _x^z(\omega )} - Y_0 < 0\big )\, \mathbb {P}^z(\mathrm{d}\omega ). \end{aligned}$$

If we assume, in addition, some local “symmetry,” i.e., that for some constant \(c\in (0,\infty )\) we have

$$\begin{aligned} \frac{\mathbb {P}^z(Y_t - z < 0)}{\mathbb {P}^z(Y_t - z \ge 0)} = c \quad \text {for all } t>0,\;z\in \mathbb {R}, \end{aligned}$$
(6.3)

then we get \(\mathbb {P}^{Y_{\tau _x^z}(\omega )}\big (Y_{t-\tau _x^z(\omega )} - Y_0 < 0\big ) = c \,\mathbb {P}^{Y_{\tau _x^z}(\omega )}\big (Y_{t-\tau _x^z(\omega )} - Y_0 \ge 0\big )\) and, with a similar argument,

$$\begin{aligned} \mathbb {P}^z\left( \tau _x^z\le t, Y_t < Y_{\tau _x^z} \right) = c\,\mathbb {P}^z\left( \tau _x^z\le t, Y_t\ge Y_{\tau _x^z}\right) . \end{aligned}$$

This means that we can follow the lines of the proof of Theorem 6.1 to derive the following general result.

Theorem 6.3

(Markov reflection principle) Suppose \((Y_t,\mathbb {P}^z)\) is a strong Markov process satisfying the local symmetry condition (6.3). Set \(S_t = \sup \{Y_u-Y_0 \,:\, 0\le u\le t\}\). Then, we have for all \(t,x>0\) and \(z\in \mathbb {R}\)

$$\begin{aligned} \mathbb {P}^z(S_t>x)&\le \mathbb {P}^z (S_t\ge x, Y_t\ge Y_{ \tau _x^z}\,|\,Y_t\ge z)\\&\le \mathbb {P}^z (Y_t-z\ge x\,|\,Y_t\ge z). \end{aligned}$$
(6.4)

If \(Y_t\) has only non-positive jumps, then \(Y_{ \tau _x^z}=x+z\) a.s., and we get for all \(t,x>0\) and \(z\in \mathbb {R}\)

$$\begin{aligned} \mathbb {P}^z(S_t\ge x) = \mathbb {P}^z(Y_t-z\ge x\,|\,Y_t\ge z). \end{aligned}$$
(6.5)

Remark 6.4

It is also possible to prove (6.1) using relation (3.6) in Alili and Chaumont [1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meerschaert, M.M., Schilling, R.L. & Sikorskii, A. Stochastic solutions for fractional wave equations. Nonlinear Dyn 80, 1685–1695 (2015). https://doi.org/10.1007/s11071-014-1299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1299-z

Keywords

Navigation