Skip to main content

Advertisement

Log in

Integration of a nonlinear energy sink and a piezoelectric energy harvester

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A mechanical-piezoelectric system is explored to reduce vibration and to harvest energy. The system consists of a piezoelectric device and a nonlinear energy sink (NES), which is a nonlinear oscillator without linear stiffness. The NES-piezoelectric system is attached to a 2-degree-of-freedom primary system subjected to a shock load. This mechanical-piezoelectric system is investigated based on the concepts of the percentages of energy transition and energy transition measure. The strong target energy transfer occurs for some certain transient excitation amplitude and NES nonlinear stiffness. The plots of wavelet transforms are used to indicate that the nonlinear beats initiate energy transitions between the NES-piezoelectric system and the primary system in the transient vibration, and a 1:1 transient resonance capture occurs between two subsystems. The investigation demonstrates that the integrated NES-piezoelectric mechanism can reduce vibration and harvest some vibration energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, X., McFarland, D. M., Bergman, L. A., and Vakakis, A. F. Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dynamics, 33(1), 87–102 (2003)

    Article  MATH  Google Scholar 

  2. Vakakis, A. F. Shock isolation through the use of nonlinear energy sinks. Journal of Vibration and Control, 9(1-2), 79–93 (2003)

    Article  MATH  Google Scholar 

  3. Gendelman, O., Manevitch, L. I., Vakakis, A. F., and M’Closkey, R. Energy pumping in nonlinear mechanical oscillators: part I, dynamics of the underlying Hamiltonian systems. Journal of Applied Mechanics, 68(1), 34–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Vakakis, A. F. and Gendelman, O. Energy pumping in coupled mechanical oscillators: part II, resonance capture. Journal of Applied Mechanics, 68(1), 42–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Vakakis, A. F. Inducing passive nonlinear energy sinks in linear vibrating systems. Journal of Vibration and Acoustics, 123(3), 324–332 (2001)

    Article  Google Scholar 

  6. Lee, Y. S., Vakakis, A. F., Bergman, L. A., McFarland, D. M., Kerschen, G., Nucera F., Tsakirtzis, S., and Panagopoulos, P. N. Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proceedings of the Institution of Mechanical Engineers, 222(2), 77–134 (2008)

    Google Scholar 

  7. Gourdon, E. and Lamarque, C. H. Nonlinear energy sink with uncertain parameters. Journal of Computational and Nonlinear Dynamics, 1(3), 187–195 (2006)

    Article  Google Scholar 

  8. Al-Shudeifat, M. A. Highly efficient nonlinear energy sink. Nonlinear Dynamics, 76(4), 1905–1920 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lamarque, C. H., Thouverez, F., Rozier, B., and Dimitrijevic, Z. Targeted energy transfer in a 2-DOF mechanical system coupled to a non-linear energy sink with varying stiffness. Journal of Vibration and Control (2015) DOI 10.1177/1077546315618540

    Google Scholar 

  10. McFarland, D. M., Bergman, L. A., and Vakakis, A. F. Experimental study of non-linear energy pumping occurring at a single fast frequency. International Journal of Non-Linear Mechanics, 40(6), 891–899 (2005)

    Article  MATH  Google Scholar 

  11. Lee, Y. S., Kerschen, G., Vakakis, A. F., Panagopoulos, P., Bergman, L., and McFarland, D. M. Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Physica D: Nonlinear Phenomena, 204(1), 41–69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kerschen, G., Lee, Y. S., Vakakis, A. F., McFarland, D. M., and Bergman, L. A. Irreversible passive energy transfer in coupled oscillators with essential nonlinearity. Journal on Applied Mathematics, 66(2), 648–679 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Georgiades, F., Vakakis, A. F., and Kerschen, G. Broadband passive targeted energy pumping from a linear dispersive rod to a lightweight essentially non-linear end attachment. International Journal of Non-Linear Mechanics, 42(5), 773–788 (2007)

    Article  Google Scholar 

  14. Ahmadabadi, Z. N. and Khadem, S. E. Nonlinear vibration control of a cantilever beam by a nonlinear energy sink. Mechanism and Machine Theory, 50, 134–149 (2012)

    Article  Google Scholar 

  15. Gourdon, E., Lamarque, C. H., and Pernot, S. Contribution to efficiency of irreversible passive energy pumping with a strong nonlinear attachment. Nonlinear Dynamics, 50(4), 793–808 (2007)

    Article  MATH  Google Scholar 

  16. Kremer, D. and Liu, K. A nonlinear energy sink with an energy harvester: transient responses. Journal of Sound and Vibration, 333(20), 4859–4880 (2014)

    Article  Google Scholar 

  17. Sodano, H. A. and Inman, D. J. A review of power harvesting from vibration using piezoelectric materials. The Shock and Vibration Digest, 36(3), 197–206 (2004)

    Article  Google Scholar 

  18. Anton, S. R. and Sodano, H. A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures, 16(3), R1–R21 (2007)

    Article  Google Scholar 

  19. Zhu, D., Tudor, M. J., and Beeby, S. P. Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Measurement Science and Technology, 21(2), 022001 (2009)

    Article  Google Scholar 

  20. Tang, L. H., Yang, Y. W., and Soh, C. K. Toward broadband vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures, 21(18), 1867–1897 (2010)

    Article  Google Scholar 

  21. Daqaq, M. F., Masana, R., Erturk, A., and Quinn, D. D. On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Applied Mechanics Reviews, 66(4), 040801 (2014)

    Article  Google Scholar 

  22. Harne, R. L. and Wang, K. W. A review of the recent research on vibration energy harvesting via bistable systems. Smart Materials and Structures, 22(2), 023001 (2013)

    Article  Google Scholar 

  23. Pellegrini, S. P., Tolou, N., Schenk, M., and Herder, J. L. Bistable vibration energy harvesters: a review. Journal of Intelligent Material Systems and Structures, 24, 1303–1312 (2012)

    Article  Google Scholar 

  24. Chen, L. Q. and Jiang, W. A. Internal resonance energy harvesting. Journal of Applied Mechanics, 82(3), 031004 (2015)

    Article  Google Scholar 

  25. Chtiba, M. O., Choura, S., and El-Borgi, S. Vibration confinement and energy harvesting in flexible structures. Journal of Sound and Vibration, 329(3), 261–276 (2010)

    Article  MATH  Google Scholar 

  26. Ahmadabadi, Z. N. and Khadem, S. E. Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. Journal of Sound and Vibration, 333(19), 4444–4457 (2014)

    Article  Google Scholar 

  27. Zhang, Y., Tang, L. H., and Liu, K. F. Piezoelectric energy harvesting with a nonlinear energy sink. Proceedings of SPIE, 9431, 94310R (2015)

    Article  Google Scholar 

  28. Yang, K., Zhang, Y. W., Ding, H., Yang, T. Z., Li, Y., and Chen, L. Q. Nonlinear energy sink for whole-spacecraft vibration reduction. Journal of Vibration and Acoustics of the ASME, 139(2), 021011 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yewei Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11572182, 11232009, and 11402151) and the Natural Science Foundation of Liaoning Province (No. 2015020106)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, Y., Ding, H. et al. Integration of a nonlinear energy sink and a piezoelectric energy harvester. Appl. Math. Mech.-Engl. Ed. 38, 1019–1030 (2017). https://doi.org/10.1007/s10483-017-2220-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2220-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation