Skip to main content
Log in

A new lattice model with the consideration of the traffic interruption probability for two-lane traffic flow

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we proposed a new lattice model of two-lane traffic flow considering the effects of traffic interruption probability. The stability condition is deduced from the linear stability analysis for two-lane freeways. Also, the modified Korteweg–de Vries equation is obtained to describe the traffic phase transition resulted from traffic interruption probability through nonlinear analysis in two-lane system. The numerical simulation results validate that the traffic interruption probability further improves the stability of traffic flow on two-lane freeways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wong, S.C., Leung, B.S.Y., Loo, B.P.Y., Hung, W.T., Lo, H.K.: A qualitative assessment methodology for road safety policy strategies. Accid. Anal. Prev. 36, 281 (2004)

    Article  Google Scholar 

  2. Wong, S.C., Sze, N.N., Li, Y.C.: Contributory factors to traffic crashes at signalized intersections in Hong Kong. Accid. Anal. Prev. 39, 1107 (2007)

    Article  Google Scholar 

  3. Sze, N.N., Wong, S.C.: Diagnostic analysis of the logistic model for pedestrian injury severity in traffic crashes. Accid. Anal. Prev. 39, 1267 (2007)

    Article  Google Scholar 

  4. Telesca, L., Lovallo, M.: Analysis of the temporal properties in car accident time series. Phys. A 387, 3299 (2008)

    Article  Google Scholar 

  5. Baykal-Gürsoy, M., Xiao, W., Ozbay, K.: Modeling traffic flow interrupted by incidents. Eur. J. Oper. Res. 195, 127 (2009)

    Article  MATH  Google Scholar 

  6. Tang, T.Q., Huang, H.J., Xu, G.: A new macro model with consideration of the traffic interruption probability. Phys. A 387, 6845 (2008)

    Article  Google Scholar 

  7. Tang, T.Q., Huang, H.J., Wong, S.C., Jiang, R.: A new car-following model with consideration of the traffic interruption probability. Chin. Phys. B 18, 0975 (2009)

    Article  Google Scholar 

  8. Tian, C., Sun, D.H.: Continuum modeling for two-lane traffic flow with consideration of the traffic interruption probability. Chin. Phys. B 19, 120501 (2010)

    Article  Google Scholar 

  9. Peng, G.H., Cai, X.H., Cao, B.F., Liu, C.Q.: A new lattice model of traffic flow with the consideration of the traffic interruption probability. Phys. A 391, 656–663 (2012)

    Article  Google Scholar 

  10. Nagatani, T.: Modied KdV equation for jamming transition in the continuum models of traffic. Phys. A 261, 599–607 (1998)

    Article  MathSciNet  Google Scholar 

  11. Nagatani, T.: TDGL and MKdV equations for jamming transition in the lattice models of traffic. Phys. A 264, 581–592 (1999)

    Article  Google Scholar 

  12. Ge, H.X., Dai, S.Q., Xue, Y., Dong, L.Y.: Stabilization analysis and modified Korteweg–de Vries equation in a cooperative driving system. Phys. Rev. E 71, 066119 (2005)

    Article  MathSciNet  Google Scholar 

  13. Ge, H.X., Cheng, R.J.: The “backward looking” effect in the lattice hydrodynamic model. Phys. A 387, 6952–6958 (2008)

    Article  Google Scholar 

  14. Ge, H.X.: The Korteweg–de Vries soliton in the lattice hydrodynamic model. Phys. A 388, 1682–1686 (2009)

    Article  Google Scholar 

  15. Ge, H.X., Cheng, R.J., Lei, L.: The theoretical analysis of the lattice hydrodynamic models for traffic flow theory. Phys. A 389, 2825–2834 (2010)

    Article  Google Scholar 

  16. Li, X.L., Li, Z.P., Han, X.L., Dai, S.Q.: Effect of the optimal velocity function on traffic phase transitions in lattice hydrodynamic models. Commun. Nonlinear Sci. Numer. Simul. 14, 2171–2177 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, Z.P., Li, X.L., Liu, F.Q.: Stabilization analysis and modified KdV equation of lattice models with consideration of relative current. Int. J. Mod. Phys. C 19, 1163–1173 (2008)

    Article  MATH  Google Scholar 

  18. Li, Z.P., Liu, F.Q., Sun, J.: A lattice traffic model with consideration of preceding mixture traffic information. Chin. Phys. B 20, 088901 (2011)

    Article  Google Scholar 

  19. Nagatani, T.: Jamming transition in traffic flow on triangular lattice. Phys. A 271, 200–221 (1999)

    Article  Google Scholar 

  20. Nagatani, T.: Jamming transition in a two-dimensional trafficflow model. Phys. Rev. E 59, 4857–4864 (1999)

    Article  Google Scholar 

  21. Nagatani, T.: Jamming transition of high-dimensional traffic dynamics. Phys. A 272, 592–611 (1999)

    Article  Google Scholar 

  22. Peng, G.H., Cai, X.H., Liu, C.Q., Cao, B.F.: A new lattice model of traffic flow with the consideration of the driver’s forecast effects. Phys. Lett. A 375, 2153–2157 (2011)

    Article  MATH  Google Scholar 

  23. Peng, G.H., Cai, X.H., Cao, B.F., Liu, C.Q.: Non-lane-based lattice hydrodynamic model of traffic flow considering the lateral effects of the lane width. Phys. Lett. A 375, 2823–2827 (2011)

    Article  MATH  Google Scholar 

  24. Peng, G.H., Cai, X.H., Liu, C.Q., Cao, B.F.: A new lattice model of traffic flow with the consideration of the honk effect. Int. J. Mod. Phys. C 22, 967–976 (2011)

    Article  MATH  Google Scholar 

  25. Peng, G.H., Cai, X.H., Liu, C.Q., Tuo, M.X.: A new lattice model of traffic flow with the anticipation effect of potential lane changing. Phys. Lett. A 376, 447–451 (2012)

    Article  MATH  Google Scholar 

  26. Peng, G.H., Nie, F.Y., Cao, B.F., Liu, C.Q.: A driver’s memory lattice model of traffic flow and its numerical simulation. Nonlinear Dyn. 67, 1811–1815 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sun, D.H., Tian, C., Liu, W.N.: A traffic flow lattice model considering relative current influence and its numerical simulation. Chin. Phys. B 19, 080514 (2010)

    Article  Google Scholar 

  28. Tian, H.H., He, H.D., Wei, Y.F., Xue, Y., Lu, W.Z.: Lattice hydrodynamic model with bidirectional pedestrian flow. Phys. A 388, 2895–2902 (2009)

    Article  MathSciNet  Google Scholar 

  29. Tian, J.F., Jia, B., Li, X.G., Gao, Z.Y.: Flow difference effect in the lattice hydrodynamic model. Chin. Phys. B 19, 040303 (2010)

    Article  Google Scholar 

  30. Xue, Y.: Lattice model of the optimal traffic flow. Acta Phys. Sin. 53, 25–30 (2004)

    Google Scholar 

  31. Zhu, H.B.: Lattice models of traffic flow considering drivers’ delay in response. Chin. Phys. B 18, 1322–1327 (2009)

    Article  Google Scholar 

  32. Zhu, W.X.: A backward looking optimal current lattice model. Commun. Theor. Phys. 50, 753–756 (2008)

    Article  Google Scholar 

  33. Zhu, W.X., Chi, E.X.: Analysis of generalized optimal current lattice model for traffic flow. Int. J. Mod. Phys. C. 19, 727–739 (2008)

    Article  MATH  Google Scholar 

  34. Nagatani, T.: Jamming transitions and the modied Korteweg–de Vries equation in a two-lane traffic flow. Phys. A 265, 297–310 (1999)

    Article  Google Scholar 

  35. Newell, G.F.: Nonlinear effects in the dynamics of car following. Oper. Res. 9, 209 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  36. Whitham, G.B.: Exact solutions for a discrete system arising in the traffic flow. Proc. R. Soc. Lond. A 428, 49 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tang, T.Q., Huang, H.J., Xue, Y.: An improved two-lane traffic flow lattice model. Acta Phys. Sin. 55, 4026–4031 (2006)

    Google Scholar 

  38. Peng, G.H.: A coupling lattice model of traffic flow on two lanes and numerical simulation. Acta Phys. Sin. 59, 3824–3830 (2010)

    Google Scholar 

Download references

Acknowledgments

The work presented here was partially supported by the Key Project of Chinese Ministry of Education (Grant No. 211123), Hunan Provincial Natural Science Foundation of China (Grant No. 14JJ2125), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 10B072), Doctor Scientific Research Startup Project Foundation of Hunan University of Arts and Science, China (Grant No. BSQD1010), the Key Project of the Scientific Research Foundation of Hunan University of Arts and Science, China (Grant No. 13ZD14), Strategic research grant, City University of Hong Kong (Projects No. CityU-SRG 7004176) and Natural Science Foundation of China (Grant No. 11302125) and the Fund of the Key Construction Academic Subject (wireless physics) of Hunan University of Arts and Science, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Zhen Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, GH., He, HD. & Lu, WZ. A new lattice model with the consideration of the traffic interruption probability for two-lane traffic flow. Nonlinear Dyn 81, 417–424 (2015). https://doi.org/10.1007/s11071-015-2001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2001-9

Keywords

Navigation