Skip to main content
Log in

Effect of driver’s anticipation in a new two-lane lattice model with the consideration of optimal current difference

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new lattice hydrodynamic traffic flow model is proposed by considering the driver’s anticipation effect (DAE) in sensing optimal current difference (OCD) for two-lane system. The effect of anticipation parameter on the stability of traffic flow is examined through linear stability analysis and shown that it can significantly enlarge the stability region on the phase diagram. Nonlinear analysis is conducted, and mKdV equation is derived to describe propagation behavior of a density wave near the critical point. The driver’s physical delay in sensing optimal current difference effect is also investigated and found that it has different effect on two-lane traffic based on whether lane changing is allowed or not. Simulation results are found in good agreement with the theoretical findings, which confirms that traffic jam can be suppressed efficiently by considering the DAEOCD effect in a two-lane traffic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jiang, R., Wu, Q.S., Zhu, Z.J.: A new continuum model for traffic flow and numerical tests. Transp. Res. B 36, 405–419 (2002)

    Article  Google Scholar 

  2. Gupta, A.K., Katiyar, V.K.: A new anisotropic continuum model for traffic flow. Phys. A 368, 551–559 (2006)

    Article  Google Scholar 

  3. Gupta, A.K., Katiyar, V.K.: Analyses of shock waves and jams in traffic flow. J. Phys. A Math. Gen. 38, 4069–4083 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gupta, A.K., Katiyar, V.K.: Phase transition of traffic states with on-ramp. Phys. A 371, 674–682 (2006)

    Article  Google Scholar 

  5. Gupta, A.K., Redhu, P.: Analyses of the drivers anticipation effect in a new lattice hydrodynamic traffic flow model with passing. Nonlinear Dyn. 76, 1001–1011 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Huang, H.J., Tang, T.Q., Gao, Z.Y.: Continuum modeling for two-lane traffic flow. Acta Mech. Sin. 22, 131–137 (2006)

    Article  MATH  Google Scholar 

  7. Tang, T.Q., Li, C.Y., Wu, Y.H., Huang, H.J.: Impact of the honk effect on the stability of traffic flow. Phys. A 390, 3362–3368 (2011)

    Article  Google Scholar 

  8. Tang, T.Q., Li, C.Y., Huang, H.J., Shang, H.Y.: A new fundamental diagram theory with the individual difference of the drivers perception ability. Nonlinear Dyn. 67, 2255–2265 (2012)

    Article  Google Scholar 

  9. Tang, T.Q., Huang, H.J., Xu, G.: A new macro model with consideration of the traffic interruption probability. Phys. A 387, 6845–6856 (2008)

    Article  Google Scholar 

  10. Tang, T.Q., Huang, H.J., Wong, S.C., Xu, X.Y.: A new overtaking model and numerical tests. Phys. A 376, 649–657 (2007)

    Article  Google Scholar 

  11. Nagatani, T.: Modified KdV equation for jamming transition in the continuum models of traffic. Phys. A 261, 599–607 (1998)

    Article  MathSciNet  Google Scholar 

  12. Ge, H.X., Cheng, R.J.: The backward looking effect in the lattice hydrodynamic model. Phys. A 387, 6952–6958 (2008)

    Article  Google Scholar 

  13. Peng, G.H., Cai, X.H., Cao, B.F., Liu, C.Q.: Non-lane-based lattice hydrodynamic model of traffic flow considering the lateral effects of the lane width. Phys. Lett. A 375, 2823–2827 (2011)

    Article  MATH  Google Scholar 

  14. Peng, G.H., Cai, X.H., Liu, C.Q., Tuo, M.X.: A new lattice model of traffic flow with the anticipation effect of potential lane changing. Phys. Lett. A 376, 447–451 (2012)

  15. Peng, G.H.: A new lattice model of traffic flow with the consideration of individual difference of anticipation driving behavior. Commun. Nonlinear Sci. Numer. Simul. 18, 2801–2806 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kang, Y.R., Sun, D.H.: Lattice hydrodynamic traffic flow model with explicit drivers physical delay. Nonlinear Dyn. 71, 531–537 (2013)

    Article  MathSciNet  Google Scholar 

  17. Ge, H.X., Dai, S.Q., Xue, Y., Dong, L.Y.: Stabilization analysis and modified Korteweg–de Vries equation in a cooperative driving system. Phys. Rev. E 71, 066119 (2005)

    Article  MathSciNet  Google Scholar 

  18. Ge, H.X., Ge, H.X., Cheng, R.J., Lei, L.: The Korteweg–de Vries soliton in the lattice hydrodynamic model. Phys. A 388, 1682–1686 (2009)

    Article  Google Scholar 

  19. Ge, H.X., Cheng, R.J., Lei, L.: The theoretical analysis of the lattice hydrodynamic models for traffic flow theory. Phys. A 389, 2825–2834 (2010)

    Article  Google Scholar 

  20. Li, X.L., Li, Z.P., Han, X.L., Dai, S.Q.: Effect of the optimal velocity function on traffic phase transitions in lattice hydrodynamic models. Commun. Nonlinear Sci. Numer. Simul. 14, 2171–2177 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Peng, G.H., Cai, X.H., Liu, C.Q., Cao, B.F.: A new lattice model of traffic flow with the consideration of the driver’s forecast effects. Phys. Lett. A 375, 2153–2157 (2011)

    Article  MATH  Google Scholar 

  22. Peng, G.H., Cai, X.H., Cao, B.F., Liu, C.Q.: A new lattice model of traffic flow with the consideration of the traffic interruption probability. Phys. A 391, 656–663 (2012)

    Article  Google Scholar 

  23. Peng, G.H., Nie, F.Y., Cao, B.F., Liu, C.Q.: A drivers memory lattice model of traffic flow and its numerical simulation. Nonlinear Dyn. 67, 1811–1815 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nagatani, T.: Jamming transitions and the modified Korteweg–de Vries equation in a two-lane traffic flow. Phys. A 265, 297–310 (1999)

    Article  Google Scholar 

  25. Nagatani, T.: Jamming transition in a two-dimensional traffic flow model. Phys. Rev. E 59, 4857 (1999)

    Article  Google Scholar 

  26. Nagatani, T.: Jamming transition of high-dimensional traffic dynamics. Phys. A 272, 592–611 (1999)

    Article  Google Scholar 

  27. Peng, G.H.: A new lattice model of two-lane traffic flow with the consideration of optimal current difference. Commun. Non. Sci. Numer. Simul. 18, 559–566 (2013)

    Article  MATH  Google Scholar 

  28. Wang, T., Gao, Z.Y., Zhao, X.M., Tian, J.F., Zhang, W.Y.: Flow difference effect in the two-lane lattice hydrodynamic model. Chin. Phys. B 21, 070507 (2012)

    Article  Google Scholar 

  29. Peng, G.H.: A new lattice model of the traffic flow with the consideration of the driver anticipation effect in a two-lane system. Nonlinear Dyn. 73, 1035–1043 (2013)

    Article  MATH  Google Scholar 

  30. Gupta, A.K., Redhu, P.: Analyses of drivers anticipation effect in sensing relative flux in a new lattice model for two-lane traffic system. Phys. A 390, 5622–5632 (2013)

  31. Zhang, M., Sun, D.H., Tian, C.: An extended two-lane traffic flow lattice model with drivers delay time. Nonlinear Dyn. 77, 839–847 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese Universities Scientific Fund (Grant No. WK0010000032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapna Sharma.

Appendix 1

Appendix 1

In this appendix, we give the expansion of each terms in Eq. (8) using Eqs. (17) and (18) to the fifth order of \(\epsilon \).

$$\begin{aligned} \rho _j(t+\tau )= & {} \rho _c +\epsilon R+\epsilon ^2 (b\tau )\partial _X R \nonumber \\&\quad +~\frac{\epsilon ^3}{2}(b\tau )^2 \partial ^{2}_X R+\frac{\epsilon ^4}{6}(b\tau )^3 \partial ^{3}_X R+\epsilon ^4\tau \partial _T R \nonumber \\&\quad +~ \frac{\epsilon ^5}{24}(b\tau )^4 \partial ^{4}_X R +\epsilon ^{5}b\tau ^2 \partial _T \partial _X R. \end{aligned}$$
(27)
$$\begin{aligned} \rho _j(t+2\tau )= & {} \rho _c +\epsilon R+\epsilon ^2 (2b\tau )\partial _X R \nonumber \\&\quad +~\frac{\epsilon ^3}{2}(2b\tau )^2 \partial ^{2}_X R \nonumber \\&\quad +~\frac{\epsilon ^4}{6}(2b\tau )^3 \partial ^{3}_X R+\epsilon ^4(2\tau ) \partial _T R\nonumber \\&\quad + \,\frac{\epsilon ^5}{24}(2b\tau )^4 \partial ^{4}_X R +\epsilon ^{5}(4b\tau ^2) \partial _T \partial _X R. \end{aligned}$$
(28)
$$\begin{aligned} \rho _{j+1}(t)= & {} \rho _c+\epsilon R+\epsilon ^2 \partial _X R \nonumber \\&\quad +~\frac{\epsilon ^3}{2} \partial ^2_X R+\frac{\epsilon ^4}{6}\partial ^3_X R+\frac{\epsilon ^5}{24}\partial ^4_X R. \end{aligned}$$
(29)
$$\begin{aligned}&\rho _{j+1}(t+\tau )-2\rho _{j}(t+\tau )+\rho _{j-1}(t+\tau ) \nonumber \\= & {} \epsilon ^3\partial ^2_X R +~\epsilon ^4(b\tau )\partial ^3_X R\nonumber \\&\qquad +~\frac{\epsilon ^5}{12}(1+6b^2\tau ^2)\partial ^4_X R. \end{aligned}$$
(30)

The expansion of optimal velocity function at the turning point is

$$\begin{aligned} V(\rho _j)= & {} V(\rho _c)+V'(\rho _c)(\rho _j-\rho _c) \nonumber \\&\quad +~\frac{V'''(\rho _c)}{6}(\rho _j-\rho _c)^3. \end{aligned}$$
(31)
$$\begin{aligned} V(\rho _{j+1})= & {} V(\rho _c)+V'(\rho _c)(\rho _{j+1}-\rho _c) \nonumber \\&\quad +~\frac{V'''(\rho _c)}{6}(\rho _{j+1}-\rho _c)^3. \end{aligned}$$
(32)

Using Eqs. (31) and (32), we get

$$\begin{aligned}&V(\rho _{j+1})-V(\rho _j)\nonumber \\&\quad = V'(\rho _c)\left[ \epsilon ^2\partial _XR +\frac{\epsilon ^3}{2}\partial _X^2R+\frac{\epsilon ^4}{6}\partial _X^3R+\frac{\epsilon ^5}{24}\partial _X^4R\right] \nonumber \\&\qquad \quad +\frac{V'''(\rho _c)}{6}\left[ \epsilon ^4\partial _XR^3+\frac{\epsilon ^5}{2}\partial ^2_XR^3\right] . \end{aligned}$$
(33)

Some other important expansions are also computed using Eqs. (27)–(33) and are given as

$$\begin{aligned}&V'(\rho _{j+2}(t))\tilde{{\varDelta }}\rho _{j+2}(t)-2V'(\rho _{j+1}(t))\tilde{{\varDelta }}\rho _{j+1}(t) \nonumber \\&\quad \quad +~V'(\rho _{j}(t))\tilde{{\varDelta }}\rho _{j}(t)=\epsilon ^3 (b\tau )V'(\rho _c)\partial ^2_X R \nonumber \\&\quad \quad +~\epsilon ^4 (b\tau )V'(\rho _c)\partial ^3_X R \nonumber \\&\quad \quad +~\frac{\epsilon ^5 }{2} (b^2\tau ^2+2b\tau )V'(\rho _c)\partial ^4_X R. \end{aligned}$$
(34)
$$\begin{aligned}&V(\rho _{j+2})-2V(\rho _{j+1})+V(\rho _j)\nonumber \\&\quad =\epsilon ^3 V'(\rho _c) \partial ^2_X R +\epsilon ^4 V'(\rho _c)\partial ^3_X R \nonumber \\&\quad \quad +~\frac{7\epsilon ^5 }{12}V'(\rho _c)\partial ^4_X R. \end{aligned}$$
(35)
$$\begin{aligned}&V'(\rho _{j+1}(t))\tilde{{\varDelta }}\rho _{j+1}(t) -V'(\rho _{j}(t))\tilde{{\varDelta }}\rho _{j}(t)\nonumber \\&\quad =\frac{\epsilon ^3}{2} (b\tau )V'(\rho _c)\partial ^2_X R\nonumber \\&\quad \quad +~\frac{\epsilon ^4}{2} (B^2\tau ^2+b\tau )V'(\rho _c)\partial ^3_X R+\epsilon ^5 V'(\rho _c)\nonumber \\&\quad \quad \times ~\left[ \tau \partial _T \partial _X R +\frac{(4b\tau +6b^2\tau ^2+4b^3\tau ^3)}{24}\partial ^4_X R\right] .\nonumber \\ \end{aligned}$$
(36)

By inserting (27), (28), (30), (33), (34), (35) and (36) into Eq. (8), we obtain Eq. (19).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S. Effect of driver’s anticipation in a new two-lane lattice model with the consideration of optimal current difference. Nonlinear Dyn 81, 991–1003 (2015). https://doi.org/10.1007/s11071-015-2046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2046-9

Keywords

Navigation