Skip to main content
Log in

Pattern formation and spatiotemporal chaos in a reaction–diffusion predator–prey system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we consider a diffusive predator–prey system with modified Holling–Tanner functional response under homogeneous Neumann boundary condition. The qualitative analysis and Hopf bifurcation of the original ODE system are discussed, the conditions of the Turing instability for the reaction–diffusion system are derived, and the Turing space in the parameters space is achieved. We present the results of numerical simulations in order to validate the obtained analytical findings. We found some interesting spatiotemporal patterns when parameter values are taken in Turing–Hopf domain, in which the dynamics shows spatiotemporal behavior that is influenced by temporal oscillations as well as by Turing instabilities. With the help of numerical simulations, we identified the different types of spatial patterns in this diffusive predator–prey system, including stationary spatial pattern, periodic competing dynamics, and spatiotemporal chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Holling, C.S.: The functional response of predator to prey density and its role in mimicry and population regulation. Mem. Entomol. Sec. Can. 45, 1–60 (1965)

    Article  Google Scholar 

  2. Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  3. Banerjee, M., Banerjee, S.: Turing instabilities and spatio-temporal chaos in ratio-dependent Holling–Tanner model. Math. Biosci. 236, 64–76 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Skalski, G., Gilliam, J.F.: Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82, 3083–3092 (2001)

    Article  Google Scholar 

  5. Wollkind, J.D., Logan, J.A.: Temperature-dependent predator–prey mite ecosystem on apple tree foliage. J. Math. Biol. 6, 265–283 (1978)

    Article  Google Scholar 

  6. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1978)

    Google Scholar 

  7. Jeschke, J., Kopp, M., Tollrian, R.: Predator functional responses: discriminating between handling and digesting prey. Ecol. Monogr. 72, 95–112 (2002)

    Article  Google Scholar 

  8. Hsu, S.B., Huang, T.W.: Global stability for a class of predator–prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shi, H.B., Li, W.T., Lin, G.: Positive steady states of a diffusive predator–prey system with modified Holling–Tanner functional response. Nonlinear Anal. Real Word Appl. 11, 3711–3721 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  11. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975)

    Article  Google Scholar 

  12. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B 237, 37–72 (1952)

    Article  Google Scholar 

  13. Segel, L.A., Jackson, J.L.: Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37, 545–559 (1972)

    Article  Google Scholar 

  14. Sherratt, J.A., Eagan, B.T., Lewis, M.A.: Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? Philos. Trans. R. Soc. Lond. Ser. B 352, 21–38 (1997)

    Article  Google Scholar 

  15. Li, M.F., Han, B., Xu, L., Zhang, G.: Spiral patterns near Turing instability in a discrete reaction diffusion system. Chaos, Solitons Fractals 49, 1–6 (2013)

    Article  MathSciNet  Google Scholar 

  16. Mukhopadhyay, B., Bhattacharyya, R.: Modeling the role of diffusion coefficients on Turing instability in a reaction–diffusion prey–predator system. Bull. Math. Biol. 68, 293–313 (2006)

  17. Pascual, M.: Diffusion-induced chaos in a spatial predator–prey system. Philos. Trans. R. Soc. Lond. Ser. B 251, 1–7 (1993)

    Article  Google Scholar 

  18. Sun, G.Q., Jin, Z., Zhao, Y.G., Liu, Q.X., Li, L.: Spatial pattern in a predator–prey system with both self- and cross-diffusion. Int. J. Mod. Phys. C 20, 71–84 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sun, G.Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator–prey system. Nonlinear Dyn. 58, 75–84 (2009)

    Article  MATH  Google Scholar 

  20. McGehee, E.A., Peacock-López, E.: Turing patterns in a modified Lotka–Volterra model. Phys. Lett. A 342, 90–98 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hoang, T., Hwang, H.J.: Turing instability in a general system. Nonlinear Anal. Theory Methods Appl. 91, 93–113 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Malchow, M.: Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics. Philos. Trans. R. Soc. Lond. Ser. B 251, 103–109 (1993)

    Article  Google Scholar 

  23. Tian, C.R., Ling, Z., Lin, Z.G.: Turing pattern formation in a predator–prey-mutualist system. Nonlinear Anal. Real World Appl. 12, 3224–3237 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wang, W.M., Liu, Q.X., Jin, Z.: Spatiotemporal complexity of a ratio-dependent predator–prey system. Phys. Rev. E 75, 051913 (2007)

    Article  MathSciNet  Google Scholar 

  25. Zhang, J.F., Li, W.T., Yan, X.P.: Hopf bifurcation and Turing instability in spatial homogeneous and inhomogeneous predator–prey models. Appl. Math. Comput. 218, 1883–1893 (2011)

  26. Barrio, R.A., Varea, C., Arag\(\acute{o}\)n, J.L., Maini, P.K.: A two-dimensional numerical study of spatial pattern formation in interacting Turing systems. Bull. Math. Biol. 61, 483–505 (1999)

  27. Nagorcka, B.N., Mooney, J.R.: From stripes to spots: prepatterns which can be produced in the skin by a reaction–diffusion system. IMA J. Math. Appl. Med. Biol. 9, 249–269 (1992)

    Article  MATH  Google Scholar 

  28. Shoji, H., Iwasa, Y., Kondo, S.: Stripes, spots, or reversed spots in two-dimensional Turing systems. J. Theor. Biol. 224, 339–350 (2003)

    Article  MathSciNet  Google Scholar 

  29. Lou, Q., Chen, J.X., Zhao, Y.H., Shen, F.R., Fu, Y., Wang, L.L., Liu, Y.: Control of turbulence in heterogeneous excitable media. Phys. Rev. E 85, 026213 (2012)

  30. Chen, J.X., Peng, L., Zhao, Y.H., You, S.P., Wu, N.J., Ying, H.P.: Dynamics of spiral waves driven by a rotating electric field. Commun. Nonlinear Sci. Numer. Simul. 19, 60–66 (2014)

  31. Ma, J., Hu, B.L., Wang, C.N., Jin, W.Y.: Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn. 73, 73–83 (2013)

    Article  MathSciNet  Google Scholar 

  32. Hu, B.L., Ma, J., Tang, J.: Selection of multiarmed spiral waves in a regular network of neurons. PLoS One 8, e69251 (2013)

    Article  Google Scholar 

  33. Zhang, T.H., Xing, Y.P., Zang, H., Han, M.A.: Spatio-temporal dynamics of a reaction–diffusion system for a predator–prey model with hyperbolic mortality. Nonlinear Dyn. 78, 265–277 (2014)

    Article  MathSciNet  Google Scholar 

  34. Wang, T.: Pattern dynamics of an epidemic model with nonlinear incidence rate. Nonlinear Dyn. 77, 31–40 (2014)

    Article  Google Scholar 

  35. Zhao, H.Y., Huang, X.X., Zhang, X.B.: Turing instability and pattern formation of neural networks with reaction–diffusion terms. Nonlinear Dyn. 76, 115–124 (2014)

    Article  MathSciNet  Google Scholar 

  36. Liu, P.P., Xue, Y.: Spatiotemporal dynamics of a predator–prey model. Nonlinear Dyn. 69, 71–77 (2012)

    Article  MathSciNet  Google Scholar 

  37. Li, L., Jin, Z.: Pattern dynamics of a spatial predator–prey model with noise. Nonlinear Dyn. 67, 1737–1744 (2012)

    Article  MathSciNet  Google Scholar 

  38. Li, A.W.: Impact of noise on pattern formation in a predator–prey model. Nonlinear Dyn. 66, 689–694 (2011)

    Article  Google Scholar 

  39. Sun, G.Q., Jin, Z., Li, L., Li, B.L.: Self-organized wave pattern in a predator–prey model. Nonlinear Dyn. 60, 265–275 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, W.M., Zhang, L., Wang, H.L., Li, Z.Q.: Pattern formation of a predator–prey system with Ivlev-type functional response. Ecol. Model. 221, 131–140 (2010)

    Article  Google Scholar 

  41. Baurmanna, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol. 245, 220–229 (2007)

    Article  Google Scholar 

  42. Wakano, J.Y., Hauert, C.: Pattern formation and chaos in spatial ecological public goods games. J. Theor. Biol. 268, 30–38 (2011)

    Article  MathSciNet  Google Scholar 

  43. Garvie, M.R.: Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in MATLAB. Bull. Math. Biol. 69, 931–956 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  44. Nagano, S., Maeda, Y.: Phase transitions in predator–prey systems. Phys. Rev. E 85, 011915 (2012)

    Article  Google Scholar 

  45. Hu, G.P., Li, X.L., Lu, S.P., Wang, Y.P.: Bifurcation analysis and spatiotemporal patterns in a diffusive predator–prey model. Int. J. Bifurc. Chaos 24, 1450081 (2014)

    Article  MathSciNet  Google Scholar 

  46. Dilão, R.: Turing instabilities and patterns near a Hopf bifurcation. Appl. Math. Comput. 164, 391–414 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees and the editors for their suggestions that greatly improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping Hu.

Additional information

This work was supported by NNSF of China (No. 41375115).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Li, X. & Wang, Y. Pattern formation and spatiotemporal chaos in a reaction–diffusion predator–prey system. Nonlinear Dyn 81, 265–275 (2015). https://doi.org/10.1007/s11071-015-1988-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1988-2

Keywords

Mathematics Subject Classfication

Navigation