Skip to main content
Log in

Painlevé analysis, complete Lie group classifications and exact solutions to the time-dependent coefficients Gardner types of equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the variable-coefficient Gardner (vc-Gardner) types of equations, which arise in fluid dynamics, nonlinear lattice and plasma physics. As its special cases, the generalized cylindrical KdV types of equations are considered simultaneously. By using the combination of Painlevé analysis and Lie group classification method, the integrable conditions, Bäcklund transformations and complete group classifications of the vc-Gardner types of equations are obtained. Then, the exact solutions generated from the Painlevé analysis and symmetry reductions are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, H., Li, J., Liu, L.: Painlevé analysis, Lie symmetries, and exact solutions for the time-dependent coefficients Gardner equations. Nonlinear Dyn. 59, 497–502 (2010)

    Article  MATH  Google Scholar 

  2. Clarkson, P.: Painlevé analysis and the complete integrability of a generalized variable-coefficient Kadomtsev–Petviashvili equation. IMA J. Appl. Math. 44, 27–53 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bluman, G., Cheviakov, A., Anco, S.: Applications of symmetry methods to partial differential equations. In: Antman, S., Marsden, J., Sirovich, L. (eds.) Applied Mathematical Sciences, vol. 168. Springer, New York (2010)

  4. Li, J., Xu, T., Meng, X., Zhang, Y., Zhang, H., Tian, B.: Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice plasma physics and ocean dynamics with symbolic computation. J. Math. Anal. Appl. 336, 1443–1455 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zhang, Y., Li, J., Lv, Y.: The exact solution and integrable properties to the variable-coefficient modified Korteweg–de Vires equation. Ann. Phys. 323, 3059–3064 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gardner, C., Greene, J., Kruskal, M., Miura, R.: Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  7. Ablowitz, M., Segur, H.: Soliton and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  Google Scholar 

  8. Matveev, V., Salle, M.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    MATH  Google Scholar 

  9. Hirota, R., Satsuma, J.: A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice. Suppl. Prog. Theor. Phys. 59, 64–100 (1976)

    Article  MathSciNet  Google Scholar 

  10. Liu, H., Li, J., Chen, F.: Exact periodic wave solutions for the hKdV equation. Nonlinear Anal. TMA 70, 2376–2381 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Olver, P.: Applications of Lie groups to differential equations. In: Halmos, P., Gehring, F., Moore, C. (eds.) Graduate Texts in Mathematics, vol. 107. Springer, New York (1993)

  12. Pucci, E., Saccomandi, G.: Potential symmetries and solutions by reduction of partial differential equations. J. Phys. A Math. Gen. 26, 681–690 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Qu, C., Huang, Q.: Symmetry reductions and exact solutions of the affine heat equation. J. Math. Anal. Appl. 346, 521–530 (2008)

  14. Chaolu, T., Pang, J.: An algorithm for the complete symmetry classification of differential equations based on Wu’s method. J. Eng. Math. 66, 181–199 (2010)

  15. Liu, H., Li, J., Liu, L.: Lie group classifications and exact solutions for two variable-coefficient equations. Appl. Math. Comput. 215, 2927–2935 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, H., Li, J., Liu, L., Wei, Y.: Group classifications, optimal systems and exact solutions to the generalized Thomas equations. J. Math. Anal. Appl. 383, 400–408 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, H., Li, J., Liu, L.: Complete group classification and exact solutions to the generalized short pulse equation. Stud. Appl. Math. 129, 103–116 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu, H., Geng, Y.: Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid. J. Differ. Equ. 254, 2289–2303 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Clarkson, P., Kruskal, M.: New similarity reductions of the Boussinesq equation. J. Math. Phys. 30, 2201–2213 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, J., Liu, Z.: Smooth and non-smooth traveling waves in a nonlinearly dispersive equation. Appl. Math. Model. 25, 41–56 (2000)

    Article  MATH  Google Scholar 

  21. Liu, H., Li, J.: Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations. J. Comput. Appl. Math. 257, 144–156 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Weiss, J.: The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys. 24, 1405–1413 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  23. Newell, A., Tabor, M., Zeng, Y.: A unified approach to Painlevé expansions. Phys. D 29, 1–68 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Conte, R., Musette, M.: The Painlevé Handbook. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  25. Liu, H., Li, J.: Lie symmetry analysis and exact solutions for the short pulse equation. Nonlinear Anal. TMA 71, 2126–2133 (2009)

    Article  MATH  Google Scholar 

  26. Liu, H., Li, J., Zhang, Q.: Lie symmetry analysis and exact explicit solutions for general Burgers’ equation. J. Comput. Appl. Math. 228, 1–9 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Byrd, P., Friedman, M.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  28. Wang, Z., Guo, D.: Introduction to special functions. In: Gao, C. (ed.) The Series of Advanced Physics of Peking University. Peking University Press, Beijing (2000) (in Chinese)

  29. Fokas, A.S.: Symmetries and integrability. Stud. Appl. Math. 77, 253–299 (1987)

    MATH  MathSciNet  Google Scholar 

  30. Zakharov, V. (ed.): What is Integrability. Springer, Berlin (1991)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the editors and anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanze Liu.

Additional information

This work is supported by the National Natural Science Foundation of China under Grant No. 11171041 and the doctorial foundation of Liaocheng University under Grant No. 31805.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, J. Painlevé analysis, complete Lie group classifications and exact solutions to the time-dependent coefficients Gardner types of equations. Nonlinear Dyn 80, 515–527 (2015). https://doi.org/10.1007/s11071-014-1885-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1885-0

Keywords

Mathematics Subject Classification

Navigation