Skip to main content
Log in

Lie symmetry, nonlocal symmetry analysis, and interaction of solutions of a (2+1)-dimensional KdV–mKdV equation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We use the method of Lie symmetry analysis to investigate the properties of a (2+1)-dimensional KdV–mKdV equation. Using the Ibragimov method, which relies only on the existence of the commutator table, we construct an optimal system of one-dimensional subalgebras of the Lie algebra and study invariant solutions and similarity reductions by considering representatives of the optimal system. To analyze some nonlocal symmetry properties, we apply the truncated Painlevé expansion method and obtain two Bäcklund transformations that are not autotransformations and one auto-Bäcklund transformation. To localize the nonlocal symmetry and obtain a local Lie point symmetry, we introduce an expanded system. Using solutions of the corresponding Cauchy problems for Lie point symmetries, we prove a theorem on a finite symmetry transformation and find the \(n\)th Bäcklund transformation in terms of determinants. Based on one of the obtained Bäcklund transformations that are not autotransformations, we derive lump-type solutions. In addition, we prove the integrability of the equation by the consistent Riccati expansion method. We present explicit soliton-cnoidal wave solutions and investigate the dynamical characteristics of the obtained solutions using numerical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. G. W. Bluman and S. C. Anco, Symmetry and Itegration Methods for Differential Equations (Appl.Math. Sci., Vol. 154), Springer, New York (2002).

    MATH  Google Scholar 

  2. G. W. Bluman, A. F. Cheviakov, and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations (Appl. Math. Sci., Vol. 168), Springer, New York (2010).

    Book  MATH  Google Scholar 

  3. A. Paliathanasis and M. Tsamparlis, “Lie symmetries for systems of evolution equations,” J. Geom. Phys., 124, 165–169 (2018); arXiv:1710.08824v1 [math.AP] (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. G. W. Bluman and A. F. Cheviakov, “Nonlocally related systems, linearization and nonlocal symmetries for the nonlinear wave equation,” J. Math. Anal. Appl., 333, 93–111 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. G. W. Bluman and A. F. Cheviakov, “Framework for potential systems and nonlocal symmetries: Algorithmic approach,” J. Math. Phys., 46, 123506 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. G. W. Bluman and Z. Yang, “A symmetry-based method for constructing nonlocally related partial differential equation systems,” J. Math. Phys., 54, 093504 (2013); arXiv:1211.0100 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. P. Satapathy and T. Raja Sekhar, “Nonlocal symmetries classifications and exact solution of Chaplygin gas equations,” J. Math. Phys., 59, 081512 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Z. Zhao, “Conservation laws and nonlocally related systems of the Hunter–Saxton equation for liquid crystal,” Anal. Math. Phys., 9, 2311–2327 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  9. X.-R. Hu, S.-Y. Lou, and Y. Chen, “Explicit solutions from eigenfunction symmetry of the Korteweg–de Vries equation,” Phys. Rev. E, 85, 056607 (2012).

    Article  ADS  Google Scholar 

  10. S. Y. Lou, X. Hu, and Y. Chen, “Nonlocal symmetries related to Bäcklund transformation and their applications,” J. Phys. A: Math. Theor., 45, 155209 (2012).

    Article  ADS  MATH  Google Scholar 

  11. J. Chen, Z. Ma, and Y. Hu, “Nonlocal symmetry, Darboux transformation and soliton-cnoidal wave interaction solution for the shallow water wave equation,” J. Math. Anal. Appl., 460, 987–1003 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  12. N. A. Kudryashov, “Painlevé analysis and exact solutions of the fourth-order equation for description of nonlinear waves,” Commun. Nonlinear Sci. Numer. Simul., 28, 1–9 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. S. Y. Lou, “Residual symmetries and Bäcklund transformations,” arXiv:1308.1140 (2013).

  14. S.-J. Liu, X.-Y. Tang, and S.-Y. Lou, “Multiple Darboux–Bäcklund transformations via truncated Painlevé expansion and Lie point symmetry approach,” Chin. Phys. B, 27, 060201 (2018).

    Article  ADS  Google Scholar 

  15. Y.-H. Wang and H. Wang, “Nonlocal symmetry, CRE solvability and soliton–cnoidal solutions of the (2+1)-dimensional modified KdV–Calogero–Bogoyavlenkskii–Schiff equation,” Nonlinear Dynam., 89, 235–241 (2017).

    Article  MATH  Google Scholar 

  16. B. Ren, “Symmetry reduction related with nonlocal symmetry for Gardner equation,” Commun. Nonlinear Sci. Numer. Simul., 42, 456–463 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. B. Ren, X.-P. Cheng, and J. Lin, “The (2+1)-dimensional Konopelchenko–Dubrovsky equation: nonlocal symmetries and interaction solutions,” Nonlinear Dynam., 86, 1855–1862 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Huang and Y. Chen, “Localized excitations and interactional solutions for the reduced Maxwell–Bloch equations,” Commun. Nonlinear Sci. Numer. Simul., 67, 237–252 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Z. Zhao and B. Han, “Residual symmetry, Bäcklund transformation, and CRE solvability of a (2+1)-dimensional nonlinear system,” Nonlinear Dynam., 94, 461–474 (2018).

    Article  MATH  Google Scholar 

  20. S. Y. Lou, “Consistent Riccati expansion for integrable systems,” Stud. Appl. Math., 134, 372–402 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Chen and Z. Ma, “Consistent Riccati expansion solvability and soliton-cnoidal wave interaction solution of a (2+1)-dimensional Korteweg–de Vries equation,” Appl. Math. Lett., 64, 87–93 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  22. Z. Zhao, “Bäcklund transformations, rational solutions, and soliton-cnoidal wave solutions of the modified Kadomtsev–Petviashvili equation,” Appl. Math. Lett., 89, 103–110 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  23. X.-Z. Liu, J. Yu, and Z.-M. Lou, “New interaction solutions from residual symmetry reduction and consistent Riccati expansion of the (2+1)-dimensional Boussinesq equation,” Nonlinear Dynam., 92, 1469–1479 (2018).

    Article  MATH  Google Scholar 

  24. M. N. B. Mohamad, “Exact solutions to the combined KdV and mKdV equation,” Math. Meth. Appl. Sci., 15, 73–78 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Kaya and I. E. Inan, “A numerical application of the decomposition method for the combined KdV–mKdV equation,” Appl. Math. Comp., 168, 915–926 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  26. E. V. Krishnan and Y.-Z. Peng, “Exact solutions to the combined KdV–mKdV equation by the extended mapping method,” Phys. Scr., 73, 405–409 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. Bekir, “On traveling wave solutions to combined KdV–mKdV equation and modified Burgers–KdV equation,” Commun. Nonlinear Sci. Numer. Simul., 14, 1038–1042 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. O. I. Bogoyavlenskii, “Breaking solitons: III,” Math. USSR-Izv., 36, 129–137 (1991).

    Article  MathSciNet  Google Scholar 

  29. B. G. Konopelchenko, “Inverse spectral transform for the (2+1)-dimensional Gardner equation,” Inverse Problems, 7, 739–754 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. X. Geng and C. Cao, “Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions,” Nonlinearity, 14, 1433–1452 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Y. Chen and Z. Yan, “New exact solutions of (2+1)-dimensional Gardner equation via the new sine-Gordon equation expansion method,” Chaos Solitons Fractals, 26, 399–406 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. W.-P. Hu, Z.-C. Deng, Y.-Y. Qin, and W.-R. Zhang, “Multi-symplectic method for the generalized (2+1)-dimensional KdV–mKdV equation,” Acta Mech. Sin., 28, 793–800 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Y. Liu, F. Duan, and C. Hu, “Painlevé property and exact solutions to a (2+1) dimensional KdV–mKdV equation,” J. Appl. Math. Phys., 3, 697–706 (2015).

    Article  Google Scholar 

  34. T. Motsepa and C. M. Khalique, “On the conservation laws and solutions of a (2+1) dimensional KdV–mKdV equation of mathematical physics,” Open Phys., 16, 211–214 (2018).

    Article  Google Scholar 

  35. N. H. Ibragimov, “Optimal system of invariant solutions for the Burgers equation,” Presented at 2nd Conf. on Non-linear Science and Complexity, MOGRAN-12: Symposium on Lie Group Analysis and Applications in Nonlinear Sciences, Session Tu-SA/1, Porto, Portugal, 28–31 July 2008 (2008).

  36. J. F. Ganghoffer and I. Mladenov, eds., Similarity and Symmetry Methods: Applications in Elasticity and Mechanics of Materials (Lect. Notes Appl. Comput. Mech., Vol. 73), Springer, Cham (2014).

    Book  Google Scholar 

  37. Z. Zhao and B. Han, “Lie symmetry analysis, Bäcklund transformations, and exact solutions of a (2+1)-dimensional Boiti–Leon–Pempinelli system,” J. Math. Phys., 58, 101514 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Z. Zhao and B. Han, “Lie symmetry analysis of the Heisenberg equation,” Commun. Nonlinear Sci. Numer. Simul., 45, 220–234 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Z. Zhao and B. Han, “On symmetry analysis and conservation laws of the AKNS system,” Z. Naturforsch. A, 71, 741–750 (2016).

    Article  ADS  Google Scholar 

  40. H. Liu and Y. Geng, “Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid,” J. Differ. Equ., 254, 2289–2303 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. H. Liu, B. Sang, X. Xin, and X. Liu, “CK transformations, symmetries, exact solutions, and conservation laws of the generalized variable-coefficient KdV types of equations,” J. Comput. Appl. Math., 345, 127–134 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  42. X. Lü and W.-X. Ma, “Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation,” Nonlinear Dynam., 85, 1217–1222 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  43. Y.-F. Hua, B.-L. Guo, W.-X. Ma, and X. Lü, “Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves,” Appl. Math. Model., 74, 184–198 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  44. G.-Q. Xu and A.-M. Wazwaz, “Integrability aspects and localized wave solutions for a new (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation,” Nonlinear Dynam., 98, 1379–1390 (2019).

    Article  Google Scholar 

  45. W.-X. Ma, “Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs,” J. Geom. Phys., 133, 10–16 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. W.-X. Ma and Y. Zhou, “Lump solutions to nonlinear partial differential equations via Hirota bilinear forms,” J. Differ. Equ., 264, 2633–2659 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Z. Zhao, Y. Chen, and B. Han, “Lump soliton, mixed lump stripe, and periodic lump solutions of a (2+1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation,” Modern Phys. Lett. B, 31, 1750157 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  48. Z. Zhao and L. He, “Multiple lump solutions of the (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation,” Appl. Math. Lett., 95, 114–121 (2019); “\(M\)-lump and hybrid solutions of a generalized (2+1)-dimensional Hirota–Satsuma–Ito equation,” Appl. Math. Lett., 111, 106612 (2021); “\(M\)-lump, high-order breather solutions, and interaction dynamics of a generalized (2+1)-dimensional nonlinear wave equation,” Nonlinear Dynam., 100, 2753–2765 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  49. W.-X. Ma, “Lump solutions to the Kadomtsev–Petviashvili equation,” Phys. Lett. A, 379, 1975–1978 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research is supported by Shanxi Province Science Foundation for Youths (No. 201901D211274), Research Project Supported by Shanxi Scholarship Council of China (No. 2020-105), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2019L0531), and Fund for Shanxi “1331KIRT.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonglong Zhao.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., He, L. Lie symmetry, nonlocal symmetry analysis, and interaction of solutions of a (2+1)-dimensional KdV–mKdV equation. Theor Math Phys 206, 142–162 (2021). https://doi.org/10.1134/S0040577921020033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921020033

Keywords

Navigation