Skip to main content
Log in

Bifurcation phenomena and control analysis in class-B laser system with delayed feedback

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study dynamics in delayed class-B laser system, with particular attention focused on Hopf and double Hopf bifurcations. Firstly, we identify the critical values for stability switches, Hopf and double Hopf bifurcations and derive the normal forms near the Hopf and double Hopf bifurcations critical points. By analyzing local dynamics near bifurcation critical points, we show how the delayed feedback control parameters effect the dynamical behaviors of the system. Furthermore, detailed numerical analysis using MATLAB extends the local bifurcation analysis to a global picture, and stable windows are observed as we change control parameter. Namely, even for parameter values not chosen in the neighborhood of the Hopf bifurcation critical points, two families of stable periodic solutions, which are resulted from Hopf bifurcation, exist in a large region of delay, and they merge into a family of stable and globally existed periodic solutions. Finally, by choosing proper control parameters, numerical simulations, including stable equilibrium, stable periodic solutions and stable quasiperiodic solutions are presented to demonstrate the theoretical results. Therefore, in accordance with above theoretical analysis, reasonable lasers with proper control parameters can be designed in order to achieve various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Grigorieva, E.V., Haken, H., Kaschenko, S.A.: Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback. Opt. Commun. 165, 279–292 (1999)

    Article  Google Scholar 

  2. Pieroux, D., Erneux, T., Otsuka, K.: Minimal model of a class-B laser with delayed feedback: cascading branching of periodic solutions and period-doubling bifurcation. Phys. Rev. A 50, 1822–1829 (1994)

    Article  Google Scholar 

  3. Ségard, B., Glorieux, P., Erneux, T.: Delayed pulse dynamics in single mode class B lasers. Appl. Phys. B 81, 989–992 (2005)

    Article  Google Scholar 

  4. Weiss, C.O., Vilaseca, R.: Dyn. Lasers. VCH, Weinheim (1991)

    Google Scholar 

  5. Chen, J.L., Otsuka, K., Ishiyama, F.: Coexistence of two attractors in lasers with incoherent optical delayed feedback. Opt. Commun. 96, 259–266 (1993)

    Article  Google Scholar 

  6. Erneux, T.: Applied Delay Differential Equations. Springer, New York (2009)

    MATH  Google Scholar 

  7. Otsuka, K., Chen, J.L.: High-speed picosecond pulse generation in semiconductor lasers with incoherent optical feedback. Opt. Lett. 16, 1759–1761 (1991)

    Article  Google Scholar 

  8. Pieroux, D., Erneux, T.: Strongly pulsating lasers with delay. Phys. Rev. A 53, 2765–2771 (1996)

    Article  Google Scholar 

  9. Shahverdiev, E.M., Shore, K.A.: Synchronization in multiple time delay chaotic laser diodes subject to incoherent optical feedbacks and incoherent optical injection. Nonlinear Anal. Real. World. Appl. 12, 3114–3124 (2011)

    Article  MATH  Google Scholar 

  10. Zheng, Y., Wang, Z.: The impact of delayed feedback on the pulsating oscillations of class-B lasers. Int. J. Non-Linear. Mech. 45, 727–733 (2010)

    Article  Google Scholar 

  11. Guo, S., Chen, Y., Wu, J.: Two-parameter bifurcations in a network of two neurons with multiple delays. J. Differ. Equ. 244, 444–486 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo, Y., Jiang, W., Niu, B.: Bifurcation analysis in the control of chaos by extended delay feedback. J. Franklin Inst. 350, 155–170 (2013)

  13. Jiang, W., Yuan, Y.: Bogdanov–Takens singularity in van der Pol’s oscillator with delayed feedback. Physics D 227, 149–161 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ma, S., Lu, Q., Feng, Z.: Double Hopf bifurcation for van der Pol–Duffing oscillator with parametric delay feedback control. J. Math. Anal. Appl. 338, 993–1007 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ding, Y., Jiang, W., Yu, P.: Hopf-zero bifurcation in a generalized Gopalsamy neural network model. Nonlinear Dyn. 70, 1037–1050 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Campbell, S.A., Yuan, Y.: Zero singularities of codimension two and three in delay differential equations. Nonlinearity 21, 2671–2691 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Campbell, S.A., Yuan, Y., Bungay, S.D.: Equivariant Hopf bifurcation in a ring of identical cells with delayed coupling. Nonlinearity 18, 2827–2846 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hale, J.: Theory of Functional Differential Equations. Springer, New York (1997)

    Google Scholar 

  19. Qu, Y., Wei, J.: Bifurcation analysis in a predator-prey system with stage-structure and harvesting. J. Franklin Inst. 347, 1097–1113 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Song, Y.: Spatio-temporal patterns of Hopf bifurcating periodic oscillations in a pair of identical tri-neuron network loops. Commun. Nonlinear Sci. Numer. Simul. 17, 943–952 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wei, J.: Bifurcation analysis in a scalar delay differential equation. Nonlinearity 20, 2483–2498 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nazari, M., Butcher, E.A.: Analysis of stability and Hopf bifurcation of delayed feedback spin stabilization of a rigid spacecraft. Nonlinear Dyn. 74, 801–817 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang, L., Guo, S.: Hopf bifurcation in delayed van der Pol oscillators. Nonlinear Dyn. 71, 555–568 (2013)

    Article  MATH  Google Scholar 

  24. Faria, T., Magalhães, L.T.: Normal form for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122, 181–200 (1995)

    Article  MATH  Google Scholar 

  25. Faria, T., Magalhães, L.T.: Normal form for retarded functional differential equations and applications to Bogdanov–Takens singularity. J. Differ. Equ. 122, 201–224 (1995)

    Article  MATH  Google Scholar 

  26. Ding, Y., Jiang, W., Yu, P.: Double Hopf bifurcation in delayed van der Pol–Duffing equation. Int. J. Bifurcat. Chaos 23, 1350014 (2013)

    Article  MathSciNet  Google Scholar 

  27. Wu, J.: Symmetric functional differential equations and neural networks with memory. Trans. Am. Math. Soc. 350, 4799–4838 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to express their special gratitude to the editors and the reviewers for the helpful comments given for this paper. This work was supported by Fundamental Research Funds for the Central Universities (No. DL13BBX07), the National Natural Science Foundation of China (No. 11371112, 11426059), the Heilongjiang Provincial Natural Science Foundation (No. A201401), and the Program of Excellent Team in HIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuting Ding.

Appendices

Appendix 1

$$\begin{aligned} q_1&= d_0\left[ \hbox {i}\beta _0+\frac{\hbox {i}k(\omega -1)}{(1+\gamma )\beta _0} +\frac{\hbox {i}k(\omega -1)\gamma \hbox {e}^{-\hbox {i}\beta _0\tau _0}}{(1+\gamma )\beta _0}\right] ,\\ q_2&= -\frac{\gamma \tau _0d_0^2\hbox {i}k^2(\omega -1)}{(1+\gamma )\beta _0^3} \left( \hbox {e}^{-{\mathrm{i}}\beta _0\tau _0}-\hbox {e}^{{\mathrm{i}}\beta _0\tau _0}\right) \\&\quad \left[ \frac{\omega -1}{1+\gamma } +\frac{\gamma (\omega -1)\hbox {e}^{-{\mathrm{i}}\beta _0\tau _0}}{1+\gamma }-\hbox {i}\beta _0-\omega \right] \\&\quad -\,\gamma \tau _0d_0h_{11}^{(2)}-\gamma \tau _0d_0h_{20}^{(2)}\\&\quad +\,\frac{2\tau _0d_0\bar{d}_0\hbox {i}k^2}{3\beta _0^3} \left[ \hbox {i}\beta _0+\omega -\frac{\omega -1}{1+\gamma } -\frac{\gamma (\omega -1)\hbox {e}^{{\mathrm{i}}\beta _0\tau _0}}{1+\gamma }\right] \\&\quad \left[ \hbox {i}\beta _0-\omega +\frac{\omega -1}{1+\gamma } +\frac{\gamma (\omega -1)\hbox {e}^{-{\mathrm{i}}\beta _0\tau _0}}{1+\gamma }\right] \\&\quad +\,\frac{\gamma ^2\tau _0d_0\bar{d}_0\hbox {i}k^2(\omega -1)^2}{(1+\gamma )^2\beta _0^3} \left( \hbox {e}^{-{\mathrm{i}}\beta _0\tau _0}-\hbox {e}^{{\mathrm{i}}\beta _0\tau _0}\right) ^2\\&\quad +\,\frac{\tau _0d_0\hbox {i}k}{\beta _0}\left[ \frac{\omega -1}{1+\gamma } +\frac{\gamma (\omega -1)\hbox {e}^{-{\mathrm{i}}\beta _0\tau _0}}{1+\gamma }-\hbox {i}\beta _0-\omega \right] C_{11}^{(1)}\\&\quad -\,\frac{\tau _0d_0\hbox {i}k}{\beta _0}\left[ \frac{\omega -1}{1+\gamma } +\frac{\gamma (\omega -1)\hbox {e}^{{\mathrm{i}}\beta _0\tau _0}}{1+\gamma }-\hbox {i}\beta _0-\omega \right] C_{20}^{(1)}\\&\quad +\,\tau _0d_0\left[ \frac{(\hbox {i}\beta _0+\omega )(1+\gamma )}{\omega -1}-1\right] \left( C_{11}^{(2)}+C_{20}^{(2)}\right) , \end{aligned}$$
$$\begin{aligned} C_{11}^{(1)}&= \frac{p_{12}f_{11}^{(1)}(1+\gamma )}{k\tau _0(\omega -1)},\\ C_{11}^{(2)}&= \frac{1}{\tau _0(1+\gamma )}\left( f_{11}^{(1)}-p_{11}f_{11}^{(1)}-\omega \tau _0C_{11}^{(1)}\right) \\&\quad + \frac{\gamma f_{11}^{(1)}k(\omega -1)}{(1+\gamma )^2\beta _0^2\tau _0}\left[ d_0\left( \hbox {e}^{-{\mathrm{i}}\beta _0\tau _0}-1\right) + \bar{d}_0\left( \hbox {e}^{{\mathrm{i}}\beta _0\tau _0}-1\right) \right] ,\\ \end{aligned}$$
$$\begin{aligned} C_{20}^{(1)}&= \frac{2\hbox {i}\beta _0 (f_{20}^{(1)}-p_{11}f_{20}^{(1)}- p_{12}f_{20}^{(2)})-f_{20}^{(2)} -\gamma \hbox {e}^{-2{{\mathrm{i}}}\beta _0\tau _0}(f_{20}^{(2)}-p_{21}f_{20}^{(1)}-p_{22}f_{20}^{(2)})+p_{21}f_{20}^{(1)}+p_{22}f_{20}^{(2)}}{2\hbox {i}\beta _0\tau _0\left[ 2\hbox {i}\beta _0+\omega +k(\omega -1)(1+\gamma )\right] }\\&\quad -\frac{\gamma \hbox {e}^{-2{\mathrm{i}}\beta _0\tau _0}f_{20}^{(1)}\left[ 3k(\omega -1)d_0\left( \hbox {e}^{{\mathrm{i}}\beta _0\tau _0}-1\right) - k(\omega -1)\bar{d}_0\left( \hbox {e}^{3{\mathrm{i}}\beta _0\tau _0}-1\right) \right] }{3\beta _0^2\tau _0(1+\gamma )\left[ 2\hbox {i}\beta _0+\omega +k(\omega -1)(1+\gamma )\right] }\\&\quad -\frac{\gamma \hbox {e}^{-2{\mathrm{i}}\beta _0\tau _0}f_{20}^{(2)}\left[ 3(\omega +\hbox {i}\beta _0)d_0\left( \hbox {e}^{{\mathrm{i}}\beta _0\tau _0}-1\right) - (\omega -\hbox {i}\beta _0)\bar{d}_0\left( \hbox {e}^{3{\mathrm{i}}\beta _0\tau _0}-1\right) \right] }{3\beta _0^2\tau _0\left[ 2\hbox {i}\beta _0+\omega +k(\omega -1)(1+\gamma )\right] },\\ C_{20}^{(2)}&= \frac{(1+\gamma )f_{20}^{(2)}+k\tau _0(\omega -1)C_{20}^{1}-(1+\gamma )p_{21}f_{20}^{(1)}-(1+\gamma )p_{22}f_{20}^{(2)}}{2(1+\gamma )\hbox {i}\beta _0\tau _0}, \end{aligned}$$
$$\begin{aligned} h_{11}^{(2)}&= C_{11}^{(2)}-\frac{f_{11}^{(1)}k(\omega -1)}{(1+\gamma )\beta _0^2\tau _0} \left[ d_0\left( \hbox {e}^{-{\mathrm{i}}\beta _0\tau _0}-1\right) \right. \\&\quad \left. +\, \bar{d}_0\left( \hbox {e}^{{\mathrm{i}}\beta _0\tau _0}-1\right) \right] ,\\ h_{20}^{(2)}&= \hbox {e}^{-2{\mathrm{i}}\beta _0\tau _0}C_{20}^{(2)}+ \hbox {e}^{-2{\mathrm{i}}\beta _0\tau _0}f_{20}^{(1)}k(\omega -1)\\&\quad \left[ \frac{d_0\left( \hbox {e}^{{\mathrm{i}}\beta _0\tau _0}-1\right) }{(1+\gamma )\beta _0^2\tau _0}- \frac{\bar{d}_0\left( \hbox {e}^{3{\mathrm{i}}\beta _0\tau _0}-1\right) }{3(1+\gamma )\beta _0^2\tau _0}\right] \\&\quad +\,\hbox {e}^{-2{\mathrm{i}}\beta _0\tau _0}f_{20}^{(2)} \left[ \frac{(\omega +\hbox {i}\beta _0)d_0\left( \hbox {e}^{{\mathrm{i}}\beta _0\tau _0}-1\right) }{\beta _0^2\tau _0}\right. \\&\left. - \frac{(\omega -\hbox {i}\beta _0)\bar{d}_0\left( \hbox {e}^{3{\mathrm{i}}\beta _0\tau _0}-1\right) }{3\beta _0^2\tau _0}\right] , \end{aligned}$$

with

$$\begin{aligned} d_0&= \left( 2-\frac{\hbox {i}\omega }{\beta _0}+\frac{\hbox {i}k\tau _0(\omega -1)\gamma }{(1+\gamma )\beta _0} \hbox {e}^{-{\mathrm{i}}\beta _0\tau _0}\right) ^{-1},\,p_{11}=d_0+\bar{d}_0,\\&\quad p_{12}=\frac{d_0(\hbox {i}\beta _0+\omega )(1+\gamma )}{k(\omega -1)}+\frac{\bar{d}_0(\omega -\hbox {i}\beta _0)(1+\gamma )}{k(\omega -1)},\\ p_{21}&= \frac{\hbox {i}k(\omega -1)\bar{d}_0}{(1+\gamma )\beta _0}-\frac{\hbox {i}k(\omega -1)d_0}{(1+\gamma )\beta _0},\\&\quad p_{22}=\frac{\hbox {i}\bar{d}_0(\omega -\hbox {i}\beta _0)}{\beta _0}-\frac{\hbox {i}d_0(\omega +\hbox {i}\beta _0)}{\beta _0},\\ f_{20}^{(1)}&= \frac{\tau _0\hbox {i}k(\omega -1)}{\beta _0(1+\gamma )}\left( 1+\gamma \hbox {e}^{-\hbox {i}\beta _0\tau _0}\right) ,\\ f_{20}^{(2)}&= -\frac{k^2\tau _0\hbox {i}(\omega -1)}{\beta _0(1+\gamma )},\\ f_{11}^{(1)}&= \frac{\gamma \tau _0\hbox {i}k(\omega -1)}{\beta _0(1+\gamma )} \left( \hbox {e}^{-{\mathrm{i}}\beta _0\tau _0}-\hbox {e}^{{\mathrm{i}}\beta _0\tau _0}\right) . \end{aligned}$$

Appendix 2

For simplicity, we define function \(f_1(x)\!=\!\frac{\omega -1}{1+\gamma _c}+\hbox {i}x-\omega \) and \(f_2(x)=\frac{\gamma _c\hbox {e}^{{\mathrm{i}}x\tau _c}(\omega -1)}{1+\gamma _c}\), then,

$$\begin{aligned} P_{11}&= \frac{k^2 d_1 d_2\tau _c}{\beta _1 (2\beta _1-\beta _2)}(f_1(-\beta _2) +f_2(-\beta _1))\\&\quad \left[ f_1(-\beta _1)\left( \frac{1}{\beta _2}-\frac{1}{\beta _1}\right) +\frac{f_2(-\beta _2)}{\beta _2}-\frac{f_2(\beta _1)}{\beta _1}\right] \\&\quad -\gamma _cd_1\tau _c\left( h_{1100}^{(2)}+h_{2000}^{(2)}\right) \\&\quad -\frac{k^2 d_1\bar{d}_2\tau _c}{\beta _1 (2\beta _1+\beta _2)}(f_1(\beta _2)+f_1(-\beta _1))\\&\quad \left[ f_1(-\beta _1)\left( \frac{1}{\beta _2}+\frac{1}{\beta _1}\right) +\frac{f_2(\beta _1)}{\beta _1}+\frac{f_2(\beta _2)}{\beta _2}\right] \\&\quad -\frac{2k^2 d_1\bar{d}_1\tau _c}{3\beta _1^3}\left( f_1(-\beta _1)\right. \\&\quad \left. +\,f_2(\beta _1)) (f_1(\beta _1)+f_2(-\beta _1)\right) \\&\quad +\frac{d_1\tau _c\hbox {i}k}{\beta _1}(f_1(-\beta _1)+f_2(-\beta _1))C_{1100}^{(1)}\\&\quad -\frac{d_1\tau _c\hbox {i}k}{\beta _1} (f_1(-\beta _1)+f_2(\beta _1))C_{2000}^{(1)}\\&\quad +\,d_1\tau _c\left[ \frac{(\hbox {i}\beta _1+\omega )(1+\gamma _c)}{\omega -1}\!-\!1\right] \left( C_{1100}^{(2)}+C_{2000}^{(2)}\right) , \end{aligned}$$
$$\begin{aligned} P_{12}&= \frac{d_1^2k^2\tau _c}{\beta _2}\left[ \left( \frac{1}{\beta _1}+\frac{1}{\beta _2}\right) f_1(-\beta _1) +\frac{f_2(-\beta _1)}{\beta _1}+\frac{f_2(-\beta _2)}{\beta _2}\right] \\&\quad \left[ f_1(-\beta _1)\left( \frac{1}{\beta _1}-\frac{1}{\beta _2}\right) +\frac{f_2(-\beta _1)}{\beta _1}-\frac{f_1(\beta _2)}{\beta _2}\right] \\&\quad -\frac{d_1^2k^2\tau _c}{\beta _2}\left[ \left( \frac{1}{\beta _1}-\frac{1}{\beta _2}\right) f_1(-\beta _1)\right. \\&\quad \left. +\,\frac{f_2(-\beta _1)}{\beta _1}-\frac{f_2(\beta _2)}{\beta _2}\right] \left[ f_1(-\beta _1)\left( \frac{1}{\beta _1}\right. \right. \\&\quad \left. \left. +\,\frac{1}{\beta _2}\right) +\frac{f_2(-\beta _1)}{\beta _1}+\frac{f_2(-\beta _2)}{\beta _2}\right] \\&\quad +\frac{d_1\bar{d}_1k^2\tau _c}{2\beta _1-\beta _2}\left[ \left( \frac{1}{\beta _1}-\frac{1}{\beta _2}\right) f_1(\beta _1)\right. \\&\quad \left. +\,\frac{f_2(-\beta _1)}{\beta _1}-\frac{f_2(\beta _2)}{\beta _2}\right] \left[ f_1(-\beta _1)\left( \frac{1}{\beta _2}-\frac{1}{\beta _1}\right) \right. \\&\quad \left. +\,\frac{f_2(-\beta _2)}{\beta _2}-\frac{f_2(\beta _1)}{\beta _1}\right] \\&\quad -\frac{d_1\bar{d}_1k^2\tau _c}{2\beta _1+\beta _2}\left[ \left( \frac{1}{\beta _1}+\frac{1}{\beta _2}\right) f_1(\beta _1) +\frac{f_2(-\beta _1)}{\beta _1}+\frac{f_2(-\beta _2)}{\beta _2}\right] \\&\quad \left[ f_1(-\beta _1)\left( \frac{1}{\beta _2}+\frac{1}{\beta _1}\right) +\frac{f_2(\beta _1)}{\beta _1}+\frac{f_2(\beta _2)}{\beta _2}\right] \\ \end{aligned}$$
$$\begin{aligned}&\qquad \quad +\,\frac{2 d_1 d_2k^2\tau _c}{\beta _1-2\beta _2}\left[ \left( \frac{1}{\beta _1}-\frac{1}{\beta _2}\right) f_1(-\beta _2) +\frac{f_2(-\beta _1)}{\beta _1}\right. \\&\qquad \quad \left. -\frac{f_2(\beta _2)}{\beta _2}\right] \left( \frac{f_1(-\beta _1)}{\beta _2}+\frac{f_2(-\beta _2)}{\beta _2}\right) \\&\qquad \quad -\frac{2 d_1\bar{d}_2k^2\tau _c}{\beta _1+2\beta _2}\left( \frac{f_1(-\beta _1)}{\beta _2}+\frac{f_2(\beta _2)}{\beta _2}\right) \\&\qquad \quad \left[ f_1(\beta _2)\left( \frac{1}{\beta _1}+\frac{1}{\beta _2}\right) +\frac{f_2(-\beta _1)}{\beta _1}+\frac{f_2(-\beta _2)}{\beta _2}\right] \\&\qquad \quad +\,\frac{d_1\tau _c\hbox {i}k}{\beta _1}(f_1(-\beta _1)+f_2(-\beta _1))C_{0011}^{(1)}\\&\qquad \quad +\,\frac{d_1\tau _c\hbox {i}k}{\beta _2} (f_1(-\beta _1)+f_2(-\beta _2))C_{1001}^{(1)}\\&\qquad \quad -\,\,\frac{d_1\tau _c\hbox {i}k}{\beta _2} (f_1(-\beta _1)+f_2(\beta _2))C_{1010}^{(1)}\\&\qquad \quad +\,\,d_1\tau _c\left[ \frac{(\hbox {i}\beta _1+\omega )(1+\gamma _c)}{\omega -1}-1\right] \left( C_{0011}^{(2)}+C_{1001}^{(2)}+C_{1010}^{(2)}\right) \\&\qquad \quad -\,\,\gamma _cd_1\tau _c\left( h_{0011}^{(2)}+h_{1001}^{(2)}+h_{1010}^{(2)}\right) , \end{aligned}$$
$$\begin{aligned} P_{21}&= \frac{2d_1^2k^2\tau _c}{\beta _1(\beta _2-2\beta _1)}\left[ \left( \frac{1}{\beta _2}-\frac{1}{\beta _1}\right) f_1(-\beta _1)\right. \\&\quad \left. +\,\frac{f_2(-\beta _2)}{\beta _2}-\frac{f_2(\beta _1)}{\beta _1}\right] (f_1(-\beta _2)+f_2(-\beta _1))\\&\quad -\,\frac{2\bar{d}_1 d_2k^2\tau _c}{\beta _1(\beta _2+2\beta _1)}\left[ \left( \frac{1}{\beta _2}+\frac{1}{\beta _1}\right) f_1(\beta _1)\right. \\&\left. \left. +\frac{f_2(-\beta _1)}{\beta _1}+\frac{f_2(-\beta _2)}{\beta _2}\right) \right] (f_1(-\beta _2)+f_2(\beta _1))\\&\quad -\,\frac{d_2^2k^2\tau _c}{\beta _1}\left[ \left( \frac{1}{\beta _2} -\frac{1}{\beta _1}\right) f_1(-\beta _2)+\frac{f_2(-\beta _2)}{\beta _2}\right. \\&\quad \left. \left. -\,\frac{f_2(\beta _1)}{\beta _1}\right) \right] \left[ f_1(-\beta _2)\left( \frac{1}{\beta _2}+\frac{1}{\beta _1}\right) +\frac{f_2(-\beta _1)}{\beta _1}\right. \\&\left. +\,\frac{f_2(-\beta _2)}{\beta _2}\right] +\frac{d_2^2k^2\tau _c}{\beta _1}\left[ \left( \frac{1}{\beta _1}+\frac{1}{\beta _2}\right) f_1(-\beta _2)\right. \\&\quad \left. +\,\frac{f_2(-\beta _1)}{\beta _1}+\frac{f_2(-\beta _2)}{\beta _2}\right] \left[ f_1(-\beta _2)\left( \frac{1}{\beta _2}-\frac{1}{\beta _1}\right) \right. \\&\quad \left. +\,\frac{f_2(-\beta _2)}{\beta _2}-\frac{f_2(\beta _1)}{\beta _1}\right] \\ \end{aligned}$$
$$\begin{aligned}&\qquad \quad +\,\frac{d_2\bar{d}_2k\tau _c}{2\beta _2-\beta _1}\left[ \left( \frac{1}{\beta _2}-\frac{1}{\beta _1}\right) f_1(\beta _2) +\frac{f_2(-\beta _2)}{\beta _2}\right. \\&\qquad \quad \left. \left. -\,\frac{f_2(\beta _1)}{\beta _1}\right) \right] \left[ \left( \frac{1}{\beta _1}-\frac{1}{\beta _2}\right) f_1(-\beta _2)\right. \\&\qquad \quad \left. +\,\frac{f_2(-\beta _1)}{\beta _1}-\frac{f_2(\beta _2)}{\beta _2}\right] \\&\qquad \quad -\,\frac{d_2\bar{d}_2k^2\tau _c}{\beta _1+2\beta _2}\left[ \left( \frac{1}{\beta _1}+\frac{1}{\beta _2}\right) f_1(\beta _2) +\frac{f_2(-\beta _1)}{\beta _1}\right. \\&\qquad \quad \left. +\,\frac{f_2(-\beta _2)}{\beta _2}\right] \left[ f_1(-\beta _2)\left( \frac{1}{\beta _1}+\frac{1}{\beta _2}\right) \right. \\&\qquad \quad \left. +\,\frac{f_2(\beta _1)}{\beta _1} +\frac{f_2(\beta _2)}{\beta _2}\right] \\&\qquad \quad +\,\frac{d_2\tau _c\hbox {i}k}{\beta _1}(f_1(-\beta _2)+f_2(-\beta _1))C_{0110}^{(1)}\\&\qquad \quad -\,\frac{d_2\tau _c\hbox {i}k}{\beta _1} (f_1(-\beta _2)+f_2(\beta _2))C_{1010}^{(1)}\\&\qquad \quad +\,\frac{d_2\tau _c\hbox {i}k}{\beta _2} (f_1(-\beta _2)+f_2(-\beta _2))C_{1100}^{(1)}\\&\qquad \quad +\,d_2\tau _c\left[ \frac{(\hbox {i}\beta _2+\omega )(1+\gamma _c)}{\omega -1}-1\right] \left( C_{0110}^{(2)}+C_{1010}^{(2)}\right. \\&\qquad \quad \left. +\,C_{1100}^{(2)}\right) -\gamma _cd_2\tau _c\left( h_{0110}^{(2)}+h_{1010}^{(2)}+h_{1100}^{(2)}\right) , \end{aligned}$$
$$\begin{aligned} P_{22}&= \frac{d_1 d_2k^2\tau _c}{\beta _2 (2\beta _2-\beta _1)}(f_1(-\beta _1)+f_2(-\beta _2))\\&\quad \left( f_1(-\beta _2)\left( \frac{1}{\beta _1}-\frac{1}{\beta _2}\right) +\frac{f_2(-\beta _1)}{\beta _1}-\frac{f_2(\beta _2)}{\beta _2}\right) \\&\quad -\,\frac{\bar{d}_1 d_2k^2\tau _c}{\beta _2(\beta _1+2\beta _2)}(f_1(\beta _1)+f_2(-\beta _2))\\&\quad \left[ \left( \frac{1}{\beta _1}+\frac{1}{\beta _2}\right) f_1(-\beta _2) +\frac{f_2(\beta _1)}{\beta _1}+\frac{f_2(\beta _2)}{\beta _2}\right] \\&\quad -\,\frac{2 d_2\bar{d}_2k^2\tau _c}{3\beta _2^3}(f_1(-\beta _2)+f_2(\beta _2))(f_1(\beta _2)\\&\quad +\,f_2(-\beta _2)) +\frac{d_2\tau _c\hbox {i}k}{\beta _2}(f_1(-\beta _2)+f_2(-\beta _2))C_{0011}^{(1)}\\&\quad -\,\frac{d_2\tau _c\hbox {i}k}{\beta _2} (f_1(-\beta _2)+f_2(\beta _2))C_{0020}^{(1)}\\&\quad +\,d_2\tau _c\left[ \frac{(\hbox {i}\beta _2+\omega )(1+\gamma _c)}{\omega -1}-1\right] \\&\quad \left( C_{0011}^{(2)}+C_{0020}^{(2)}\right) -\gamma _cd_2\tau _c\left( h_{0011}^{(2)}+h_{0020}^{(2)}\right) , \end{aligned}$$

with

$$\begin{aligned} a_{11}&= d_1+\bar{d}_1+d_2+\bar{d}_2,\\ a_{12}&= \frac{d_1(\omega +\hbox {i}\beta _1)(1+\gamma _c)}{k(\omega -1)}+\frac{\bar{d}_1(\omega -\hbox {i}\beta _1)(1+\gamma _c)}{k(\omega -1)}\\&\quad +\,\frac{d_2(\omega +\hbox {i}\beta _2)(1+\gamma _c)}{k(\omega -1)}+\frac{\bar{d}_2(\omega -\hbox {i}\beta _2)(1+\gamma _c)}{k(\omega -1)},\\ a_{21}&= -\frac{d_1\hbox {i}k(\omega -1)}{\beta _1(1+\gamma _c)}+\frac{\bar{d}_1\hbox {i}k(\omega -1)}{\beta _1(1+\gamma _c)}\\&\quad -\,\frac{d_2\hbox {i}k(\omega -1)}{\beta _2(1+\gamma _c)}+\frac{\bar{d}_2\hbox {i}k(\omega -1)}{\beta _2(1+\gamma _c)},\\ a_{22}&= -\frac{d_1\hbox {i}(\omega +\hbox {i}\beta _1)}{\beta _1}+\frac{\bar{d}_1\hbox {i}(\omega -\hbox {i}\beta _1)}{\beta _1}\\&\quad -\,\frac{d_2\hbox {i}(\omega +\hbox {i}\beta _2)}{\beta _2}+\frac{\bar{d}_2\hbox {i}(\omega -\hbox {i}\beta _2)}{\beta _2},\\ b_{2000}^{(1)}&= \frac{\tau _c\hbox {i}k\left( 1+\gamma _c\hbox {e}^{-{\mathrm{i}}\beta _1\tau _c}\right) (\omega -1)}{\beta _1(1+\gamma _c)},\\ b_{2000}^{(2)}&= -\frac{\tau _c\hbox {i}k^2(\omega -1)}{\beta _1(1+\gamma _c)},\\ b_{1100}^{(1)}&= \frac{\tau _c\hbox {i}k\gamma _c(\omega -1) \left( \hbox {e}^{-{\mathrm{i}}\beta _1\tau _c}-\hbox {e}^{{\mathrm{i}}\beta _1\tau _c}\right) }{\beta _1(1+\gamma _c)}, b_{1100}^{(2)}=0,\\ b_{1010}^{(1)}&= \frac{\tau _c\hbox {i}k(\omega -1)}{1+\gamma _c}\left[ \frac{1}{\beta _1} +\frac{1}{\beta _2}+\gamma _c\left( \frac{\hbox {e}^{-{\mathrm{i}}\beta _1\tau _c}}{\beta _1}+\frac{\hbox {e}^{-{\mathrm{i}}\beta _2\tau _c}}{\beta _2}\right) \right] ,\\&\quad b_{1010}^{(2)}=-\frac{\tau _c\hbox {i}k^2(\omega -1)}{1+\gamma _c}\left( \frac{1}{\beta _1}+\frac{1}{\beta _2}\right) ,\\ \end{aligned}$$
$$\begin{aligned} b_{1001}^{(1)}&= \frac{\tau _c\hbox {i}k(\omega -1)}{1+\gamma _c}\left[ \frac{1}{\beta _1} -\frac{1}{\beta _2}+\gamma _c\left( \frac{\hbox {e}^{-{\mathrm{i}}\beta _1\tau _c}}{\beta _1}-\frac{\hbox {e}^{{\mathrm{i}}\beta _2\tau _c}}{\beta _2}\right) \right] ,\\&\quad b_{1001}^{(2)}=-\frac{\tau _c\hbox {i}k^2(\omega -1)}{1+\gamma _c}\left( \frac{1}{\beta _1}-\frac{1}{\beta _2}\right) ,\\ b_{0200}^{(1)}&= -\frac{\tau _c\hbox {i}k(\omega -1)}{\beta _1(1+\gamma _c)}\left( 1+\gamma _c\hbox {e}^{{\mathrm{i}}\beta _1\tau _c}\right) ,\\&\quad b_{0200}^{(2)}=\frac{\tau _c\hbox {i}k^2(\omega -1)}{\beta _1(1+\gamma _c)},\\ b_{0110}^{(1)}&= \frac{\tau _c\hbox {i}k(\omega -1)}{1+\gamma _c}\left[ \frac{1}{\beta _2} -\frac{1}{\beta _1}+\gamma _c\left( \frac{\hbox {e}^{-{\mathrm{i}}\beta _2\tau _c}}{\beta _2}-\frac{\hbox {e}^{{\mathrm{i}}\beta _1\tau _c}}{\beta _1}\right) \right] ,\\&\quad b_{0110}^{(2)}=-\frac{\tau _c\hbox {i}k^2(\omega -1)}{1+\gamma _c}\left( \frac{1}{\beta _2}-\frac{1}{\beta _1}\right) ,\\ b_{0101}^{(1)}&= -\frac{\tau _c\hbox {i}k(\omega -1)}{1+\gamma _c}\left[ \frac{1}{\beta _1} +\frac{1}{\beta _2}+\gamma _c\left( \frac{\hbox {e}^{{\mathrm{i}}\beta _1\tau _c}}{\beta _1}+\frac{\hbox {e}^{{\mathrm{i}}\beta _2\tau _c}}{\beta _2}\right) \right] ,\\&\quad b_{0101}^{(2)}=\frac{\tau _c\hbox {i}k^2(\omega -1)}{1+\gamma _c}\left( \frac{1}{\beta _1}+\frac{1}{\beta _2}\right) ,\\ b_{0020}^{(1)}&= \frac{\tau _c\hbox {i}k(\omega -1)}{\beta _2(1+\gamma _c)}\left( 1+\gamma _c\hbox {e}^{-{\mathrm{i}}\beta _2\tau _c}\right) ,\\&\quad b_{0020}^{(2)}=-\frac{\tau _c\hbox {i}k^2(\omega -1)}{\beta _2(1+\gamma _c)},\\ b_{0002}^{(1)}&= -\frac{\tau _c\hbox {i}k(\omega -1)}{\beta _2(1+\gamma _c)}\left( 1+\gamma _c\hbox {e}^{{\mathrm{i}}\beta _2\tau _c}\right) ,\\&\quad b_{0002}^{(2)}=\frac{\tau _c\hbox {i}k^2(\omega -1)}{\beta _2(1+\gamma _c)},\\ b_{0011}^{(1)}&= \frac{\tau _c\hbox {i}k\gamma _c(\omega -1) \left( \hbox {e}^{-{\mathrm{i}}\beta _2\tau _c}-\hbox {e}^{{\mathrm{i}}\beta _2\tau _c}\right) }{\beta _2(1+\gamma _c)}, b_{0011}^{(2)}=0,\\ \end{aligned}$$
$$\begin{aligned} C_{1100}^{(1)}&= -\frac{a_{21}(1+\gamma _c)b_{1100}^{(1)}}{k(\omega -1)},\\ C_{1100}^{(2)}&= \frac{b_{1100}^{(1)}-a_{11}b_{1100}^{(1)}-\omega C_{1100}^{(1)}}{1+\gamma _c}+\frac{\gamma _ck(\omega -1)b_{1100}^{(1)}}{\tau _c(1+\gamma _c)^2}\\&\quad \left[ \frac{Re(d_1\hbox {e}^{-{\mathrm{i}}\beta _1\tau _c}-d_1)}{\beta _1^2}+ \frac{Re(d_2\hbox {e}^{-{\mathrm{i}}\beta _2\tau _c}-d_2)}{\beta _2^2}\right] ,\\ C_{2000}^{(1)}&= \frac{(1+\gamma _c)\left( b_{2000}^{(2)}-a_{21}b_{2000}^{(1)}-a_{22}b_{2000}^{(2)}-2\hbox {i}\beta _1\tau _cC_{2000}^{(2)}\right) }{k(\omega -1)}, \end{aligned}$$
$$\begin{aligned} C_{2000}^{(2)}&= \frac{k(\omega -1)(b_{2000}^{(1)}-a_{11}b_{2000}^{(1)}-a_{12}b_{2000}^{(2)}) -(\omega +2\hbox {i}\beta _1\tau _c)(1+\gamma _c)\left( b_{2000}^{(2)}-a_{21}b_{2000}^{(1)}-a_{22}b_{2000}^{(2)}\right) }{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{-2{\mathrm{i}}\beta _1\tau _c}\right) -2\hbox {i}\beta _1\tau _c(\omega +2\hbox {i}\beta _1\tau _c)(1+\gamma _c)}\\&\quad -\,\frac{k^2\gamma _c\hbox {e}^{-2{\mathrm{i}}\beta _1\tau _c}(\omega -1)b_{2000}^{(1)}}{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{-2{\mathrm{i}}\beta _1\tau _c}\right) -2\hbox {i}\beta _1\tau _c(\omega +2\hbox {i}\beta _1\tau _c)(1+\gamma _c)}\\&\quad \left[ \frac{d_1(\omega -1)\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1^2\tau _c} - \frac{\bar{d}_1(\omega -1)\left( \hbox {e}^{3{\mathrm{i}}\beta _1\tau _c}-1\right) }{3(1+\gamma _c)\beta _1^2\tau _c}-\frac{d_2(\omega -1)\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2\tau _c(\beta _2-2\beta _1)} -\frac{\bar{d}_2(\omega -1)\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c+\hbox {i}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2\tau _c(\beta _2+2\beta _1)}\right] \\&\quad -\,\frac{k\gamma _c\hbox {e}^{-2{\mathrm{i}}\beta _1\tau _c}(\omega -1)b_{2000}^{(2)}}{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{-2{\mathrm{i}}\beta _1\tau _c}\right) -2\hbox {i}\beta _1\tau _c(\omega +2\hbox {i}\beta _1\tau _c)(1+\gamma _c)}\\&\quad \left[ \frac{d_1(\omega +\hbox {i}\beta _1)\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{\beta _1^2\tau _c}- \frac{\bar{d}_1(\omega -\hbox {i}\beta _1)\left( \hbox {e}^{3{\mathrm{i}}\beta _1\tau _c}-1\right) }{3\beta _1^2\tau _c}-\frac{d_2(\omega +\hbox {i}\beta _2)\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}-1\right) }{\beta _2\tau _c(\beta _2-2\beta _1)} -\frac{\bar{d}_2(\omega -\hbox {i}\beta _2)\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c+\hbox {i}\beta _2\tau _c}-1\right) }{\beta _2\tau _c(\beta _2+2\beta _1)}\right] , \end{aligned}$$
$$\begin{aligned} C_{1010}^{(1)}&= \frac{(1+\gamma _c)\left[ b_{1010}^{(2)}-a_{21}b_{1010}^{(1)}-a_{22}b_{1010}^{(2)} -(\hbox {i}\beta _1\tau _c+\hbox {i}\beta _2\tau _c)C_{1010}^{(2)}\right] }{k(\omega -1)},\\ C_{1010}^{(2)}&= \frac{k(\omega -1)(b_{1010}^{(1)}-a_{11}b_{1010}^{(1)}-a_{12}b_{1010}^{(2)}) -(\omega +\hbox {i}\beta _1\tau _c+\hbox {i}\beta _2\tau _c)(1+\gamma _c)(b_{1010}^{(2)}-a_{22}b_{1010}^{(2)}-a_{21}b_{1010}^{(1)})}{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{-{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}\right) -(\hbox {i}\beta _1\tau _c+\hbox {i}\beta _2\tau _c+\omega )(\hbox {i}\beta _1\tau _c+\hbox {i}\beta _2\tau _c)(1+\gamma _c)}\\&\quad -\,\frac{k\gamma _c\hbox {e}^{-{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}(\omega -1)b_{1010}^{(1)}}{k^2(\omega -1)^2\left( 1+\gamma _c\hbox {e}^{-{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}\right) -(\hbox {i}\beta _1\tau _c+\hbox {i}\beta _2\tau _c+\omega )(\hbox {i}\beta _1+\hbox {i}\beta _2)\tau _c(1+\gamma _c)}\\&\quad \left[ \frac{d_1\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _1\beta _2\tau _c}- \frac{\bar{d}_1\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c+\hbox {i}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _1\tau _c(2\beta _1+\beta _2)} +\frac{d_2\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1\beta _2\tau _c}- \frac{\bar{d}_2\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c+2\hbox {i}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2\tau _c(\beta _1+2\beta _2)}\right] \\&\quad -\,\frac{k\gamma _c\hbox {e}^{-{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}(\omega -1)b_{1010}^{(2)}}{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{-{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}\right) -(\hbox {i}\beta _1\tau _c+\hbox {i}\beta _2\tau _c+\omega )(\hbox {i}\beta _1+\hbox {i}\beta _2)\tau _c(1+\gamma _c)}\\&\quad \left[ \frac{d_1(\omega +\hbox {i}\beta _1)\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{\beta _1\beta _2\tau _c} - \frac{\bar{d}_1(\omega -\hbox {i}\beta _1)\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c+\hbox {i}\beta _2\tau _c}-1\right) }{\beta _1\tau _c(2\beta _1+\beta _2)}+\frac{d_2(\omega +\hbox {i}\beta _2)\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{\beta _1\beta _2\tau _c} -\frac{\bar{d}_2(\omega -\hbox {i}\beta _2)\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c+2\hbox {i}\beta _2\tau _c}-1\right) }{\beta _2\tau _c(\beta _1+2\beta _2)}\right] , \end{aligned}$$
$$\begin{aligned} C_{1001}^{(1)}&= \frac{(1+\gamma _c)\left[ b_{1001}^{(2)}-a_{21}b_{1001}^{(1)}-a_{22}b_{1001}^{(2)} -(\hbox {i}\beta _1\tau _c-\hbox {i}\beta _2\tau _c)C_{1001}^{(2)}\right] }{k(\omega -1)},\\ C_{1001}^{(2)}&= \frac{k(\omega -1)(b_{1001}^{(1)}-a_{11}b_{1001}^{(1)}-a_{12}b_{1001}^{(2)}) -(\omega +\hbox {i}\beta _1\tau _c-\hbox {i}\beta _2\tau _c)(1+\gamma _c)\left( b_{1001}^{(2)}-a_{21}b_{1001}^{(1)}-a_{22}b_{1001}^{(2)}\right) }{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}\right) -(\hbox {i}\beta _1\tau _c-\hbox {i}\beta _2\tau _c+\omega )(\hbox {i}\beta _1\tau _c-\hbox {i}\beta _2\tau _c)(1+\gamma _c)}\\&\quad +\frac{k^2(\omega -1)^2\gamma _c\hbox {e}^{{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}b_{1001}^{(1)}}{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}\right) -(\hbox {i}\beta _1\tau _c-\hbox {i}\beta _2\tau _c+\omega )(\hbox {i}\beta _1-\hbox {i}\beta _2)\tau _c(1+\gamma _c)}\\&\quad \left[ \frac{d_1\left( \hbox {e}^{-{\mathrm{i}}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _1\beta _2\tau _c} - \frac{\bar{d}_1\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _1\tau _c(\beta _2-2\beta _1)}+\frac{d_2\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c-2\hbox {i}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2\tau _c(2\beta _2-\beta _1)}+ \frac{\bar{d}_2\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1\beta _2\tau _c}\right] \\&\quad +\frac{k\gamma _c\hbox {e}^{{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}(\omega -1)b_{1001}^{(2)}}{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}\right) -(\hbox {i}\beta _1\tau _c-\hbox {i}\beta _2\tau _c+\omega )(\hbox {i}\beta _1-\hbox {i}\beta _2)\tau _c(1+\gamma _c)}\\&\quad \left[ \frac{d_1(\omega +\hbox {i}\beta _1)\left( \hbox {e}^{-{\mathrm{i}}\beta _2\tau _c}-1\right) }{\beta _1\beta _2\tau _c}- \frac{\bar{d}_1(\omega -\hbox {i}\beta _1)\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}-1\right) }{\beta _1\tau _c(\beta _2-2\beta _1)}+\frac{d_2(\omega +\hbox {i}\beta _2)\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c-2\hbox {i}\beta _2\tau _c}-1\right) }{\beta _2\tau _c(2\beta _2-\beta _1)}+\frac{\bar{d}_2(\omega -\hbox {i}\beta _2)\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{\beta _1\beta _2\tau _c}\right] , \end{aligned}$$
$$\begin{aligned} C_{0110}^{(1)}&= \frac{(1+\gamma _c)\left[ b_{0110}^{(2)}-a_{21}b_{0110}^{(1)}-a_{22}b_{0110}^{(2)} +(\hbox {i}\beta _1\tau _c-\hbox {i}\beta _2\tau _c)C_{0110}^{(2)}\right] }{k(\omega -1)}\\ C_{0110}^{(2)}&= \frac{k(\omega -1)(b_{0110}^{(1)}-a_{11}b_{0110}^{(1)}-a_{12}b_{0110}^{(2)}) -(\omega -\hbox {i}\beta _1\tau _c+\hbox {i}\beta _2\tau _c)(1+\gamma _c)\left( b_{0110}^{(2)}-a_{21}b_{0110}^{(1)}-a_{22}b_{0110}^{(2)}\right) }{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}\right) -(\hbox {i}\beta _1\tau _c-\hbox {i}\beta _2\tau _c+\omega )(\hbox {i}\beta _2\tau _c-\hbox {i}\beta _1\tau _c)(1+\gamma _c)}\\&\quad +\frac{\gamma _ck^2\hbox {e}^{{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}(\omega -1)^2b_{0110}^{(1)}}{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}\right) -(\hbox {i}\beta _1\tau _c-\hbox {i}\beta _2\tau _c+\omega )(\hbox {i}\beta _2\tau _c-\hbox {i}\beta _1\tau _c)(1+\gamma _c)}\\&\quad \left[ \frac{d_1\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c-2\hbox {i}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1\tau _c(2\beta _1-\beta _2)} +\frac{\bar{d}_1\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _1\beta _2\tau _c} +\frac{d_2\left( \hbox {e}^{-{\mathrm{i}}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1\beta _2\tau _c}- \frac{\bar{d}_2\left( \hbox {e}^{2{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _2\tau _c(\beta _1-2\beta _2)}\right] \\&\quad +\frac{k\gamma _c\hbox {e}^{{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}(\omega -1)b_{0110}^{(2)}}{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}\right) -(\hbox {i}\beta _1\tau _c-\hbox {i}\beta _2\tau _c+\omega )(\hbox {i}\beta _2\tau _c-\hbox {i}\beta _1\tau _c)(1+\gamma _c)}\\&\quad \left[ \frac{d_1(\omega +\hbox {i}\beta _1)\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c-2\hbox {i}\beta _1\tau _c}-1\right) }{\beta _1\tau _c(2\beta _1-\beta _2)}+ \frac{\bar{d}_1(\omega -\hbox {i}\beta _1)\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{\beta _1\beta _2\tau _c}+\frac{d_2(\omega +\hbox {i}\beta _2)\left( \hbox {e}^{-{\mathrm{i}}\beta _1\tau _c}-1\right) }{\beta _1\beta _2\tau _c}-\frac{\bar{d}_2(\omega -\hbox {i}\beta _2)\left( \hbox {e}^{2{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}-1\right) }{\beta _2\tau _c(\beta _1-2\beta _2)}\right] , \end{aligned}$$
$$\begin{aligned} C_{0011}^{(1)}&= -\frac{a_{21}(1+\gamma _c)b_{0011}^{(1)}}{k(\omega -1)},\\ C_{0011}^{(2)}&= \frac{b_{0011}^{(1)}-a_{11}b_{0011}^{(1)}-\omega C_{0011}^{(1)}}{1+\gamma _c} +\frac{\gamma _ckb_{0011}^{(1)}(\omega -1)}{\tau _c(1+\gamma _c)^2}\\&\quad \left[ \frac{Re(d_1\hbox {e}^{-{\mathrm{i}}\beta _1\tau _c}-d_1)}{\beta _1^2} +\frac{Re(d_2\hbox {e}^{-{\mathrm{i}}\beta _2\tau _c}-d_2)}{\beta _2^2}\right] ,\\ C_{0020}^{(1)}&= \frac{(1+\gamma _c)\left[ b_{0020}^{(2)}-a_{21}b_{0020}^{(1)}-a_{22}b_{0020}^{(2)} -2\hbox {i}\beta _2\tau _cC_{0020}^{(2)}\right] }{k(\omega -1)}, \end{aligned}$$
$$\begin{aligned} C_{0020}^{(2)}&= \frac{k(\omega -1)(b_{0020}^{(1)}-a_{11}b_{0020}^{(1)}-a_{12}b_{0020}^{(2)}) -(\omega +2\hbox {i}\beta _2\tau _c)(1+\gamma _c)\left( b_{0020}^{(2)}-a_{21}b_{0020}^{(1)}-a_{22}b_{0020}^{(2)}\right) }{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{-2{\mathrm{i}}\beta _2\tau _c}\right) -2\hbox {i}\beta _2\tau _c(2\hbox {i}\beta _2\tau _c+\omega )(1+\gamma _c)}\\&\quad +\frac{\gamma _ck^2\hbox {e}^{-2{\mathrm{i}}\beta _2\tau _c}(\omega -1)^2b_{0020}^{(1)}}{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{-2{\mathrm{i}}\beta _2\tau _c}\right) -2\hbox {i}\beta _2\tau _c(2\hbox {i}\beta _2\tau _c+\omega )(1+\gamma _c)}\\&\quad \left[ \frac{d_1\left( \hbox {e}^{2{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1\tau _c(\beta _1-2\beta _2)}+ \frac{\bar{d}_1\left( \hbox {e}^{2{\mathrm{i}}\beta _2\tau _c+\hbox {i}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1\tau _c(\beta _1+2\beta _2)}-\frac{d_2\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2^2\tau _c}+ \frac{\bar{d}_2\left( \hbox {e}^{3{\mathrm{i}}\beta _2\tau _c}-1\right) }{(1+\gamma _c)3\beta _2^2\tau _c}\right] \\&\quad +\frac{k\gamma _c\hbox {e}^{-2{\mathrm{i}}\beta _2\tau _c}(\omega -1)b_{0020}^{(2)}}{k(\omega -1)\left( 1+\gamma _c\hbox {e}^{-2{\mathrm{i}}\beta _2\tau _c}\right) -2\hbox {i}\beta _2\tau _c(2\hbox {i}\beta _2\tau _c+\omega )(1+\gamma _c)}\\&\quad \left[ \frac{d_1(\omega +\hbox {i}\beta _1)\left( \hbox {e}^{2{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}-1\right) }{\beta _1\tau _c(\beta _1-2\beta _2)}+ \frac{\bar{d}_1(\omega -\hbox {i}\beta _1)\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c+2\hbox {i}\beta _2\tau _c}-1\right) }{\beta _1\tau _c(\beta _1+2\beta _2)}-\frac{d_2(\omega +\hbox {i}\beta _2)\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{\beta _2^2\tau _c}+ \frac{\bar{d}_2(\omega -\hbox {i}\beta _2)\left( \hbox {e}^{3{\mathrm{i}}\beta _2\tau _c}-1\right) }{3\beta _2^2\tau _c}\right] , \end{aligned}$$
$$\begin{aligned} h_{2000}^{(2)}&= \hbox {e}^{-2{\mathrm{i}}\beta _1\tau _c}C_{2000}^{(2)}+k(\omega -1)\hbox {e}^{-2{\mathrm{i}}\beta _1\tau _c}b_{2000}^{(1)}\\&\quad \left[ \frac{d_1\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1^2\tau _c} -\frac{\bar{d}_1\left( \hbox {e}^{3{\mathrm{i}}\beta _1\tau _c}-1\right) }{3(1+\gamma _c)\beta _1^2\tau _c} - \frac{d_2\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2\tau _c(\beta _2-2\beta _1)}- \frac{\bar{d}_2\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c+\hbox {i}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2\tau _c(2\beta _1+\beta _2)}\right] \\&\quad +\,\hbox {e}^{-2{\mathrm{i}}\beta _1\tau _c}b_{2000}^{(2)} \left[ \frac{d_1(\omega +\hbox {i}\beta _1)\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{\beta _1^2\tau _c} - \frac{\bar{d}_1(\omega -\hbox {i}\beta _1)\left( \hbox {e}^{3{\mathrm{i}}\beta _1\tau _c}-1\right) }{3\beta _1^2\tau _c}\right. \\&\quad \left. -\, \frac{d_2(\omega +\hbox {i}\beta _2)\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}-1\right) }{\beta _2\tau _c(\beta _2-2\beta _1)} - \frac{\bar{d}_2(\omega -\hbox {i}\beta _2)\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c+\hbox {i}\beta _2\tau _c}-1\right) }{\beta _2\tau _c(2\beta _1+\beta _2)}\right] , \end{aligned}$$
$$\begin{aligned} h_{1100}^{(2)}&= C_{1100}^{(2)}-k(\omega -1)b_{1100}^{(1)} \left[ \frac{d_1\left( \hbox {e}^{-{\mathrm{i}}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1^2\tau _c}\right. \\&\quad +\, \frac{\bar{d}_1\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1^2\tau _c}+ \frac{d_2\left( \hbox {e}^{-{\mathrm{i}}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2^2\tau _c}\\&\quad \left. +\,\frac{\bar{d}_2\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2^2\tau _c}\right] ,\\ h_{1010}^{(2)}&= \hbox {e}^{-{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}C_{1010}^{(2)} +k(\omega -1)\hbox {e}^{-{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}b_{1010}^{(1)}\\&\quad \left[ \frac{d_1\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _1\beta _2\tau _c}- \frac{\bar{d}_1\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c+\hbox {i}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _1\tau _c(2\beta _1+\beta _2)}\right. \\&\quad \left. +\, \frac{d_2\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1\beta _2\tau _c}- \frac{\bar{d}_2\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c+2\hbox {i}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2\tau _c(\beta _1+2\beta _2)}\right] \\&\quad +\,\hbox {e}^{-{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}b_{1010}^{(2)} \left[ \frac{d_1(\omega +\hbox {i}\beta _1)\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{\beta _1\beta _2\tau _c}\right. \\&\quad -\, \frac{\bar{d}_1(\omega -\hbox {i}\beta _1)\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c+\hbox {i}\beta _2\tau _c}-1\right) }{\beta _1\tau _c(2\beta _1+\beta _2)}\\&\quad +\, \frac{d_2(\omega +\hbox {i}\beta _2)\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{\beta _1\beta _2\tau _c}\\&\quad \left. -\, \frac{\bar{d}_2(\omega -\hbox {i}\beta _2)\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c+2\hbox {i}\beta _2\tau _c}-1\right) }{\beta _2\tau _c(\beta _1+2\beta _2)}\right] , \end{aligned}$$
$$\begin{aligned} h_{1001}^{(2)}&= \hbox {e}^{{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}C_{1001}^{(2)} -k(\omega -1)\hbox {e}^{{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}b_{1001}^{(1)}\\&\quad \left[ \frac{d_1\left( \hbox {e}^{-{\mathrm{i}}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _1\beta _2\tau _c}- \frac{\bar{d}_1\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _1\tau _c(\beta _2-2\beta _1)}\right. \\&\quad \left. +\, \frac{d_2\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c-2\hbox {i}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2\tau _c(2\beta _2-\beta _1)}+ \frac{\bar{d}_2\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1\beta _2\tau _c}\right] \\&\quad -\,\hbox {e}^{{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}b_{1001}^{(2)} \left[ \frac{d_1(\omega +\hbox {i}\beta _1)\left( \hbox {e}^{-{\mathrm{i}}\beta _2\tau _c}-1\right) }{\beta _1\beta _2\tau _c}\right. \\&\quad -\, \frac{\bar{d}_1(\omega -\hbox {i}\beta _1)\left( \hbox {e}^{2{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}-1\right) }{\beta _1\tau _c(\beta _2-2\beta _1)}\\&\quad +\,\frac{d_2(\omega +\hbox {i}\beta _2)\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c-2\hbox {i}\beta _2\tau _c}-1\right) }{\beta _2\tau _c(2\beta _2-\beta _1)}\\&\quad \left. +\, \frac{\bar{d}_2(\omega -\hbox {i}\beta _2)\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{\beta _1\beta _2\tau _c}\right] , \end{aligned}$$
$$\begin{aligned} h_{0110}^{(2)}&= \hbox {e}^{{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}C_{0110}^{(2)} -k(\omega -1)\hbox {e}^{{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}b_{0110}^{(1)}\\&\quad \left[ \frac{d_1\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c-2\hbox {i}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1\tau _c(2\beta _1-\beta _2)}+ \frac{\bar{d}_1\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _1\beta _2\tau _c}\right. \\&\quad \left. +\, \frac{d_2\left( \hbox {e}^{-{\mathrm{i}}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1\beta _2\tau _c}- \frac{\bar{d}_2\left( \hbox {e}^{2{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _2\tau _c(\beta _1-2\beta _2)}\right] \\&\quad -\,\hbox {e}^{{\mathrm{i}}\beta _1\tau _c-\hbox {i}\beta _2\tau _c}b_{0110}^{(2)} \left[ \frac{d_1(\omega +\hbox {i}\beta _1)\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c-2\hbox {i}\beta _1\tau _c}-1\right) }{\beta _1\tau _c(2\beta _1-\beta _2)}\right. \\&\quad +\, \frac{\bar{d}_1(\omega -\hbox {i}\beta _1)\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{\beta _1\beta _2\tau _c}\\&\quad +\, \frac{d_2(\omega +\hbox {i}\beta _2)\left( \hbox {e}^{-{\mathrm{i}}\beta _1\tau _c}-1\right) }{\beta _1\beta _2\tau _c}\\&\quad \left. -\, \frac{\bar{d}_2(\omega -\hbox {i}\beta _2)\left( \hbox {e}^{2{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}-1\right) }{\beta _2\tau _c(\beta _1-2\beta _2)}\right] , \end{aligned}$$
$$\begin{aligned} h_{0020}^{(2)}&= \hbox {e}^{-2{\mathrm{i}}\beta _2\tau _c}C_{0020}^{(2)} -k(\omega -1)\hbox {e}^{-2{\mathrm{i}}\beta _2\tau _c}b_{0020}^{(1)}\\&\quad \left[ \frac{d_1\left( \hbox {e}^{2{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1\tau _c(\beta _1-2\beta _2)}\right. \\&\quad +\, \frac{\bar{d}_1\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c+2\hbox {i}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _1\tau _c(\beta _1+2\beta _2)}\\&\quad \left. -\, \frac{d_2\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2^2\tau _c}+ \frac{\bar{d}_2\left( \hbox {e}^{3{\mathrm{i}}\beta _2\tau _c}-1\right) }{3(1+\gamma _c)\beta _2^2\tau _c}\right] \\&\quad -\,\hbox {e}^{-2{\mathrm{i}}\beta _2\tau _c}b_{0020}^{(2)} \left[ \frac{d_1(\omega +\hbox {i}\beta _1)\left( \hbox {e}^{2{\mathrm{i}}\beta _2\tau _c-\hbox {i}\beta _1\tau _c}-1\right) }{\beta _1\tau _c(\beta _1-2\beta _2)}\right. \\&\quad +\, \frac{\bar{d}_1(\omega -\hbox {i}\beta _1)\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c+2\hbox {i}\beta _2\tau _c}-1\right) }{\beta _1\tau _c(\beta _1+2\beta _2)}\\&\quad -\, \frac{d_2(\omega +\hbox {i}\beta _2)\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{\beta _2^2\tau _c}\\&\quad \left. +\, \frac{\bar{d}_2(\omega -\hbox {i}\beta _2)\left( \hbox {e}^{3{\mathrm{i}}\beta _2\tau _c}-1\right) }{3\beta _2^2\tau _c}\right] , \end{aligned}$$
$$\begin{aligned} h_{0011}^{(2)}&= C_{0011}^{(2)} -k(\omega -1)b_{0011}^{(1)}\\&\quad \left[ \frac{d_1\left( \hbox {e}^{-{\mathrm{i}}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1^2\tau _c}+ \frac{\bar{d}_1\left( \hbox {e}^{{\mathrm{i}}\beta _1\tau _c}-1\right) }{(1+\gamma _c)\beta _1^2\tau _c}\right. \\&\quad \left. +\, \frac{d_2\left( \hbox {e}^{-{\mathrm{i}}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2^2\tau _c}+ \frac{\bar{d}_2\left( \hbox {e}^{{\mathrm{i}}\beta _2\tau _c}-1\right) }{(1+\gamma _c)\beta _2^2\tau _c}\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Jiang, W. & Ding, Y. Bifurcation phenomena and control analysis in class-B laser system with delayed feedback. Nonlinear Dyn 79, 2421–2438 (2015). https://doi.org/10.1007/s11071-014-1822-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1822-2

Keywords

Navigation