Skip to main content
Log in

Functional characteristics of additional positive feedback in genetic circuits

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Multiple-positive feedback circuits are ubiquitous regulatory motifs in complex bio-molecular networks. A popular topic is why multiple-positive feedback mechanisms have been evolved and selected by organisms. To this end, a two-component dual-positive feedback genetic circuit is investigated, which consists of an auto-activation loop and a double negative feedback circuit. The auto-activation loop acts as an additional positive feedback loop (APFL), and our aim is to explore the functional characteristics of the APFL. Investigations reveal that the APFL can regulate the size of bistable region and the robust attractiveness of stable steady states. It is also found that the APFL can regulate global relative input–output sensitivities of the system. Furthermore, the APFL can tune the response speed, noise resistance and stochastic switch behavior of the system, which makes it easy to realize functional tunability and robust decision-making. Therefore, rationalizing why multiple-positive feedback circuits so frequently appear in real-world biological systems. Potential applications of the associated investigations include the design of artificial genetic circuits, the modeling and model reduction for large-scale bio-molecular networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  2. Gardner, T., Cantor, C., Cantor, J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000)

    Article  Google Scholar 

  3. Dubnau, D., Losick, R.: Bistability in bacteria. Mol. Microbiol. 61, 564–572 (2006)

    Article  Google Scholar 

  4. Tyson, J., Novák, B.: Functional motif in biochemical reaction networks. Annu. Rev. Phys. Chem. 61, 219–240 (2010)

    Article  Google Scholar 

  5. Wang, J., Zhang, J., Yuan, Z., Zhou, T.: Noise-induced switches in network systems of the genetic toggle switch. BMC Syst. Biol. 1, 50 (2007)

    Article  Google Scholar 

  6. Shah, N., Sarkar, C.: Robust network topologies for generating switch-like cellular responses. PLoS Comput. Biol. 7, e1002085 (2011)

    Article  MathSciNet  Google Scholar 

  7. Strelkowa, N., Barahona, M.: Switchable genetic oscillator operating in quasi-stable mode. J. R. Soc. Interface 7, 1071–1082 (2010)

    Article  Google Scholar 

  8. Tsai, T., Choi, Y., Ma, W., Pomerening, J., Tang, C., Ferrell Jr, J.E.: Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008)

    Article  Google Scholar 

  9. Kim, J., Yoon, Y., Cho, K.: Coupled feedback loops from dynamic motifs of cellular networks. Biophys. J. 94, 359–365 (2008)

    Article  Google Scholar 

  10. Stricker, J., Cookson, S., bennett, M., Mather, W., Tsimring, L., Hasty, J.: A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008)

    Article  Google Scholar 

  11. Brandman, O., Ferrell Jr, J.E., Li, R., Meyer, T.: Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310, 496–498 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Tian, X., Zhang, X., Liu, F., Wang, W.: Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks. Phys. Rev. E 80, 011926 (2009)

    Article  Google Scholar 

  13. Song, H., Smolen, P., Av-Ron, E., Baxter, D., Byrne, J.: Dynamics of a minial model of interlocked positive and negative feedback loops of transcriptional regulation by cAMP-response element binding proteins. Biophys. J. 92, 3407–3424 (2007)

    Article  Google Scholar 

  14. Süel, G., Garcia-Ojalvo, J., Liberman, L., Elowitz, M.: An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440, 545–550 (2006)

    Article  Google Scholar 

  15. Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004)

    Article  Google Scholar 

  16. Rue, P., Garcia-Ojalvo, J.: Gene circuit designs for noisy excitable dynamics. Math. Biosci. 231, 90–97 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Novák, B., Tyson, J.: Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981–991 (2008)

    Article  Google Scholar 

  18. Chen, A.: Modeling a synthetic biological chaotic system: relaxation oscillators coupled by quorum sensing. Nonlinear Dyn. 63, 711–718 (2011)

    Article  Google Scholar 

  19. Zhang, Z., Ye, W., Qian, Y., Zheng, Z., Huang, X., Hu, G.: Chaotic motifs in gene regulatory networks. PLoS One 7(7), e39355 (2012)

    Article  Google Scholar 

  20. Wang, P., Zhang, Y., Tan, S., Wan, L.: Explicit ultimate bound sets of a new hyperchaotic system and its application in estimating the Hausdorff dimension. Nonlinear Dyn. 74, 133–142 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, P., Li, D., Wu, X., Lü, J., Yu, X.: Ultimate bound estimation of a class of high dimensional quadratic autonomous dynamical systems. Int. J. Bifurc. Chaos 21, 2679–2694 (2011)

    Article  MATH  Google Scholar 

  22. Xiong, W., Ferrell Jr, J.E.: A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature 426, 460–465 (2003)

    Article  Google Scholar 

  23. Snoussi, E.: Necessary conditions for multistationary and stable periodicity. J. Biol. Syst. 6, 3–9 (1998)

    Article  MATH  Google Scholar 

  24. Ozbudak, E., Thattai, M., Lim, H., Shraiman, B., Van Oudenaarden, A.: Multistability in the lactose utilization network of Escherichia coli. Nature 427, 737–740 (2004)

    Article  Google Scholar 

  25. Shibata, T., Fujimoto, K.: Noisy signal amplification in ultrasensitive signal transduction. Proc. Natl. Acad. Sci. USA 102, 331–336 (2005)

    Article  Google Scholar 

  26. Hornung, G., Barkai, N.: Noise propagation and signaling sensitivity in biological networks: a role for positive feedback. PLoS Comput. Biol. 4, e8 (2008)

    Article  MathSciNet  Google Scholar 

  27. Sriram, K., Soliman, S., Fages, F.: Dynamics of the interlocked positive feedback loops explaining the robust epigenetic switching in Candida albicans. J. Theor. Biol. 258, 71–88 (2009)

    Article  Google Scholar 

  28. Bosl, W., Li, R.: The role of noise and positive feedback in the onset of autosomal dominant diseases. BMC Syst. Biol. 4, 93 (2010)

    Article  Google Scholar 

  29. Marucci, L., Barton, D., Cantone, I., Ricci, M., Cosma, M., Santini, S., di Bernardo, D., di Bernardo, M.: How to turn a genetic circuit into a synthetic tunable oscillator, or a bistable switch. PLoS One 4, e8083 (2009)

    Article  Google Scholar 

  30. Ferrell Jr, J.E.: Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Chem. Biol. 6, 140–148 (2002)

    Article  Google Scholar 

  31. Smolen, P., Baxter, D., Byrne, J.: Interlinked dual-time feedback loops can enhance robustness to stochasticity and persistence of memory. Phys. Rev. E 79, 031902 (2009)

    Article  MathSciNet  Google Scholar 

  32. Mitrophanov, A., Groisman, E.: Positive feedback in cellular control systems. BioEssays 30, 542–555 (2008)

    Article  Google Scholar 

  33. Banerjee, S., Bose, I.: Functional characteristics of a double positive feedback loop coupled with autorepression. Phys. Biol. 5, 046008 (2008)

    Article  Google Scholar 

  34. Shi, C., Zhou, T., Yuan, Z.: Functional tunability of biological circuits from additional toggle switches. IET Syst. Biol. 7(5), 126–134 (2013)

    Article  Google Scholar 

  35. Shi, C., Li, H., Zhou, T.: Architecture-dependent robustness in a class of multiple positive feedback loops. IET Syst. Biol. 7(1), 1–10 (2013)

    Article  Google Scholar 

  36. Zhang, X., Cheng, Z., Liu, F., Wang, W.: Linking fast and slow positive feedback loops creates an optimal bistable switch in cell signaling. Phys. Rev. E 76, 031924 (2007)

    Article  Google Scholar 

  37. Li, F., Long, T., Liu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle is robustly designed. Proc. Natl. Acad. Sci. USA 101, 4781–4786 (2004)

    Article  Google Scholar 

  38. Wang, G., Du, C., Chen, H., Simha, R., Rong, Y., Xiao, Y., Zeng, C.: Process-based network decomposition reveals backbone motif structure. Proc. Natl. Acad. Sci. USA 107, 10478–10483 (2010)

    Article  Google Scholar 

  39. Wang, P., Lü, J., Ogorzalek, M.J.: Global relative parameter sensitivities of the feed-forward loops in genetic networks. Neurocomputing 78, 155–165 (2012)

    Article  Google Scholar 

  40. Wang, P., Lü, J., Zhang, Y., Ogorzalek, M. J.: Global relative input–output sensitivities of the feed-forward loops in genetic networks. In: Proceedings of the 31th Chinese Control Conference, July 25–27, 7376–7381 (2012)

  41. Pigliucci, M., Murren, C.J.: Genetic assimilation and a possible evolutionary paradox: can macroevolution sometimes be so fast as to pass us by? Evol. Int. J. Org. Evol. 57, 1455–1464 (2003)

    Article  Google Scholar 

  42. Raser, J.M., O’Shea, E.K.: Noise in gene expression: origins, consequences, and control. Science 309, 2010–2013 (2005)

    Article  Google Scholar 

  43. Gonze, D., Halloy, J., Goldbeter, A.: Deterministic versus stochastic models for circadian rhythms. J. Biol. Phys. 28, 637–653 (2002)

  44. Gonze, D., Goldbeter, A.: Circadian rhythms and molecular noise. Chaos 16, 026110 (2006)

    Article  Google Scholar 

  45. Wang, P., Lü, J., Wan, L., Chen, Y.: A stochastic simulation algorithm for biochemical reactions with delays. IEEE Int. Conf. Syst. Biol. Aug. 23–25, 109–114 (2013)

  46. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  47. Zheng X, Yang X, Tao Y.: Bistability, probability transition rate and first-passage time in an autoactivating positive-feedback loop. PLoS One 6, e1704 (2011)

  48. Masoliver, J., West, B.J., Lindenberg, K.: Bistability driven by Gaussian colored noise: first passage times. Phys. Rev. A. 35, 3086–3094 (1987)

    Article  MathSciNet  Google Scholar 

  49. Wang, P., Lü, J.: Control of genetic regulatory networks: opportunities and challenges. Acta Autom. Sin. 39(12), 1969–1979 (2013)

    Article  Google Scholar 

  50. Wang, P., Lü, J., Zhang, Y., Ogorzalek, M.J.: Intrinsic noise induced state transition in coupled positive and negative feedback genetic circuit. IEEE Int. Conf. Syst. Biol. Sep. 2–4, 356–361 (2011)

  51. Liu, H., Yan, F., Liu, Z.: Oscillatory dynamics in a gene regulatory network mediated by small RNA with time delay. Nonlinear Dyn. 76, 147–159 (2014)

Download references

Acknowledgments

The authors would like to thank Profs. Tianshou Zhou and Xiaoqun Wu for their valuable comments. This work is supported by the National Science and Technology Major Project of China under Grant 2014ZX10004-001-014, the 973 Project under Grant 2014CB845302, and the National Natural Science Foundation of China under Grants 61304151, 11105040, 61025017, 11472290, the Australia ARC Discovery Grants DP130104765, the Science Foundation of Henan University under Grants 2012YBZR007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Wang.

Appendix: The derivation of mathematical model (1)

Appendix: The derivation of mathematical model (1)

From Table 1 and by the law of mass action, differential equations to describe the concentration evolutions of species in the fast equations can be obtained as follows:

$$\begin{aligned} \left\{ \begin{array}{l} \frac{\hbox {d}[X_2]}{\hbox {d}t}=k_1^{+}[X]^2-k_1^{-}[X_2]-k_2^{+}[X_2][S]+k_2^{-}[X^{*}],\\ \frac{\hbox {d}[X^{*}]}{\hbox {d}t}=k_2^{+}[X_2][S]-k_2^{-}[X^{*}]-k_3^{+}[X^{*}][D_y]+k_3^{-}[D_yX^{*}]\\ -k_6^{+}[X^{*}][D_x]+k_6^{-}[D_xX^{*}], \\ \frac{\hbox {d}[D_yX^{*}]}{\hbox {d}t}=k_3^{+}[X^{*}][D_y]-k_3^{-}[D_yX^{*}], \\ \frac{\hbox {d}[Y_2]}{\hbox {d}t}=k_4^{+}[Y]^2-k_4^{-}[Y_2]-k_5^{+}[Y_2][D_x]+k_5^{-}[D_xY_2],\\ \frac{\hbox {d}[D_xY_2]}{\hbox {d}t}=k_5^{+}[Y_2][D_x]-k_5^{-}[D_xY_2], \\ \frac{\hbox {d}[D_xX^{*}]}{\hbox {d}t}=k_6^{+}[X^{*}][D_x]-k_6^{-}[D_xX^{*}]. \\ \end{array}\right. \end{aligned}$$
(7)

Assume fast reactions can quickly reach their chemical equilibrium, one has: \([X_2]\!=\!K_1[X]^2,[X^{*}]\!=\!K_2[X_2][S], [D_yX^{*}] \!=\! K_3[X^{*}][D_y], [Y_2] \!\!=\! K_4[Y]^2, [D_xY_2] \!=\! K_5[Y_2][D_x], [D_xX^{*}] \!=\! K_6[X^{*}][D_x].\) Further considering the conservation laws: \([D_x]+[D_xX^{*}]+[D_xY_2]\,=\,[D_x^T]\) and \([D_y]+[D_yX^{*}]\,=\,[D_y^T]\), one derives:

$$\begin{aligned}{}[D_x]\,&= \,\frac{[D_x^T]}{1+K_4K_5[Y]^2+K_1K_2K_6[S][X]^2},\end{aligned}$$
(8)
$$\begin{aligned}{}[D_xX^{*}]\,&= \,\frac{K_1K_2K_6[S][X]^2[D_x^T]}{1+K_4K_5[Y]^2+K_1K_2K_6[S][X]^2},\end{aligned}$$
(9)
$$\begin{aligned}{}[D_y]\,&= \,\frac{[D_y^T]}{1+K_1K_2K_3[S][X]^2}. \end{aligned}$$
(10)

From the slow reactions, one has:

$$\begin{aligned} \left\{ \begin{array}{l} \frac{\hbox {d}[X]}{\hbox {d}t}\,=\,t_1[D_x]+t_2[D_xX^{*}]-d_X[X],\\ \frac{\hbox {d}[Y]}{\hbox {d}t}\,=\,t_3[D_y]-d_Y[Y]. \\ \end{array}\right. \end{aligned}$$
(11)

Replace \([D_x],[D_xX^{*}],[D_y]\) in Eq. (11) with Eqs. (8)–(10), thus one derives Eq. (1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhang, Y., Lü, J. et al. Functional characteristics of additional positive feedback in genetic circuits. Nonlinear Dyn 79, 397–408 (2015). https://doi.org/10.1007/s11071-014-1673-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1673-x

Keywords

Navigation