Skip to main content
Log in

Explicit ultimate bound sets of a new hyperchaotic system and its application in estimating the Hausdorff dimension

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Ultimate bound estimation of chaotic systems is a difficult yet interesting mathematical question. At present, explicit ultimate bound sets can be analytically obtained only for some special chaotic systems, and few results are known for hyper-chaotic ones. In this paper, through the Lagrange multiplier method and set operations, one derives two kinds of explicit ultimate bound sets for a novel hyperchaotic system. Based on the estimated result and optimization method, one further estimates the Hausdorff dimension of the hyperchaotic attractor. Numerical simulations show the effectiveness and correctness of the conclusions. The investigations enrich the related results for the hyperchaotic systems, and provide support for the assertion: hyperchaotic systems are ultimately bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leonov, G., Bunin, A., Koksch, N.: Attractor localization of the Lorenz system. Z. Angew. Math. Mech. 67, 649–656 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Krishchenko, A.: Localization of invariant compact sets of dynamical systems. Differ. Equ. 41, 1669–1676 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yu, P., Liao, X.: On the study of globally exponentially attractive set of a general chaotic system. Commun. Nonlinear Sci. Numer. Simul. 13, 1495–1507 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, D., Lu, J., Wu, X., Chen, G.: Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system. J. Math. Anal. Appl. 323, 844–853 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liao, X., Fu, Y., Xie, S., Yu, P.: Globally exponentially attractive sets of the family of Lorenz systems. Sci. China, Ser. F 51, 283–292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kanatnikov, A., Krishchenko, A.: Localization of invariant compact sets of nonautonomous systems. Differ. Equ. 45, 46–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, P., Li, D., Wu, X., Lü, J.: Estimating the ultimate bound for the generalized quadratic autonomous chaotic systems. In: Proc. of the 29th Chin. Contr. Conf., Beijing, China, July 29–31, pp. 791–795 (2010)

    Google Scholar 

  8. Li, D., Wu, X., Lu, J.: Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz–Haken system. Chaos Solitons Fractals 39, 1290–1296 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, P., Li, D., Hu, Q.: Bounds of the hyper-chaotic Lorenz–Stenflo system. Commun. Nonlinear Sci. Numer. Simul. 15, 2514–2520 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, P., Li, D., Wu, X., Lü, J., Yu, X.: Ultimate bound estimation of a class of high dimensional quadratic autonomous dynamical systems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 21, 2679–2694 (2011)

    Article  MATH  Google Scholar 

  11. Zhang, F., Mu, C., Li, X.: On the boundness of some solutions of the Lü system. Int. J. Bifurc. Chaos Appl. Sci. Eng. 22, 1250015 (2012)

    Article  MathSciNet  Google Scholar 

  12. Pogromsky, A., Santoboni, G., Nijmeijer, H.: An ultimate bound on the trajectories of the Lorenz system and its applications. Nonlinearity 16, 1597–1605 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, Y., Liu, X., Chen, G., Liao, X.: A new hyperchaotic Lorenz-type system: generation, analysis, and implementation. Int. J. Circuit Theory Appl. 39, 865–879 (2011)

    Google Scholar 

  14. Leonov, G.: Lyapunov dimension formulas for Henon and Lorenz attractors. St. Petersburg Math. J. 13, 1–12 (2001)

    Google Scholar 

  15. Leonov, G.: Lyapunov functions in the attractors dimension theory. J. Appl. Math. Mech. 76, 129–141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leonov, G.: Upper estimates of the Hausdorff dimension of attractors. Vestn. St. Petersbg. Univ. Ser. 1, 19–22 (1998)

    Google Scholar 

  17. Leonov, G.: Strange Attractors and Classical Stability Theory. St. Petersburg University Press, St. Petersburg (2009)

    Google Scholar 

  18. Pogromsky, A., Nijmeijer, H.: On estimates of the Hausdorff dimension of invariant compact sets. Nonlinearity 13, 927–945 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lü, J., Chen, G., Cheng, D.: A new chaotic system and beyond: the generalized Lorenz-like system. Int. J. Bifurc. Chaos Appl. Sci. Eng. 14, 1507–1537 (2004)

    Article  MATH  Google Scholar 

  20. Li, D., Wang, P., Lu, J.: Some synchronization strategies for a four-scroll chaotic system. Chaos Solitons Fractals 42, 2553–2559 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos Appl. Sci. Eng. 9, 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos Appl. Sci. Eng. 12, 659–661 (2002)

    Article  MATH  Google Scholar 

  23. Lü, J., Chen, G., Cheng, D., Cĕlikovský, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos Appl. Sci. Eng. 12, 2917–2926 (2002)

    Article  MATH  Google Scholar 

  24. Lü, J., Han, F., Yu, X., Chen, G.: Generating 3-D multi-scroll chaotic attractors: a hysteresis series switching method. Automatica 40, 1677–1687 (2004)

    Article  MATH  Google Scholar 

  25. Lü, J., Chen, G.: Generating multi-scroll chaotic attractors: theories, methods and applications. Int. J. Bifurc. Chaos Appl. Sci. Eng. 16, 775–858 (2006)

    Article  MATH  Google Scholar 

  26. Wan, L., Zhou, Q., Wang, P.: Weak attractor for stochastic Cohen–Grossberg neural networks with delays. Nonlinear Dyn. 67, 1753–1759 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wan, L., Zhou, Q., Wang, P.: Ultimate boundedness and attractor for stochastic Hopfield neural networks with time-varying delays. Nonlinear Anal., Real World Appl. 13, 953–958 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Foundation of Henan University under Grants 2012YBZR007, and also partly supported by the National Natural Science Foundation of China under Grants 60804039, 60974081, 11271295, and 60821091. This work was also partly supported by the Science and Technology Research Projects of Hubei Provincial Department of Education under Grants: D20131602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Zhang, Y., Tan, S. et al. Explicit ultimate bound sets of a new hyperchaotic system and its application in estimating the Hausdorff dimension. Nonlinear Dyn 74, 133–142 (2013). https://doi.org/10.1007/s11071-013-0953-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0953-1

Keywords

Navigation