Skip to main content
Log in

Stability and Hopf bifurcation of a two-dimensional supersonic airfoil with a time-delayed feedback control surface

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The time-delayed feedback control for a supersonic airfoil results in interesting aeroelastic behaviors. The effect of time delay on the aeroelastic dynamics of a two-dimensional supersonic airfoil with a feedback control surface is investigated. Specifically, the case of a 3-dof system is considered in detail, where the structural nonlinearity is introduced in the mathematical model. The stability analysis is conducted for the linearized system. It is shown that there is a small parameter region for delay-independently stability of the system. Once the controlled system with time delay is not delay-independently stable, the system may undergo the stability switches with the variation of the time delay. The nonlinear aeroelastic system undergoes a sequence of Hopf bifurcations if the time delay passes the critical values. Using the normal form method and center manifold theory, the direction of the Hopf bifurcation and stability of Hopf-bifurcating periodic solutions are determined. Numerical simulations are performed to illustrate the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Garrick, I.E., Reed, W.H.: Historical development of aircraft flutter. AIAA J. Aircr. 18, 897–912 (1981)

    Article  Google Scholar 

  2. Lee, B.H.K., Price, S.J., Wong, Y.S.: Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Progr. Aerosp. Sci. 35, 205–334 (1999)

    Article  Google Scholar 

  3. Dowell, E., Edwards, J., Strganac, T.: Nonlinear aeroelasticity. AIAA J. Aircr. 40, 857–874 (2003)

    Article  Google Scholar 

  4. Librescu, L., Marzocca, P.: Advances in the linear/nonlinear control of aeroelastic structural systems. Acta Mech. 178, 147–186 (2005)

    Article  MATH  Google Scholar 

  5. Mukhopadhyay, V.: Historical perspective on analysis and control of aeroelastic responses. AIAA J. Guid. Control Dyn. 26, 673–684 (2003)

    Article  Google Scholar 

  6. Ko, J., Strganac, T.W., Kurdila, A.J.: Adaptive feedback linearization for the control of a typical wing section with structural nonlinearity. Nonlinear Dyn. 18, 289–301 (1999)

    MATH  Google Scholar 

  7. Bhoi, N., Singh, S.N.: Control of unsteady aeroelastic system via state dependent Riccati equation method. J. Guid. Control Dyn. 28, 78–84 (2005)

    Article  Google Scholar 

  8. Hu, H.Y., Dowell, E.H., Virgin, L.N.: Resonances of a harmonically forced Duffing oscillator with time delay state feedback. Nonlinear Dyn. 15, 311–327 (1998)

    Article  MATH  Google Scholar 

  9. Wang, Z.H., Hu, H.Y.: Stability switches of time-delayed dynamic systems with unknown parameters. J. Sound Vib. 233, 215–233 (2000)

    Article  MATH  Google Scholar 

  10. Kolmanovskii, V.B., Nosov, V.R.: Stability of Functional Differential Equations. Academic Press, London (1986)

    MATH  Google Scholar 

  11. Gu, K., Niculescu, S.I.: Survey on recent results in the stability and control of time-delay systems. J. Dyn. Syst. Meas. Control 125, 158–165 (2003)

    Article  Google Scholar 

  12. Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39, 1667–1694 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Niculescu, S.I., Verriest, E.I., Dugard, L., Dion, J.M.: Stability and robust stability of time-delay systems: a guided tour. In: Dugard, L., Verriest, E.I. (eds.) Stability and Control of Time-Delay Systems, pp. 1–71. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic Press, New York (1963)

    MATH  Google Scholar 

  15. Wang, Z.H., Hu, H.Y.: Delay-independent stability of retarded dynamic systems of multiple degrees of freedom. J. Sound Vib. 226, 57–81 (1999)

    Article  MATH  Google Scholar 

  16. Xu, J., Chung, K.W.: Effects of time delayed position feedback on a van der Pol-Duffing oscillator. Phys. D 180, 17–39 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1977)

    Book  MATH  Google Scholar 

  18. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  19. Faria, F., Magalhaes, L.T.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122, 181–200 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xu, X., Hu, H.Y., Wang, H.L.: Stability, bifurcation and chaos of a delayed oscillator with negative damping and delayed feedback control. Nonlinear Dyn. 49, 117–129 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhou, X., Wu, Y., Li, Y., Yao, X.: Stability and Hopf bifurcation analysis on a two-neuron network with discrete and distributed delays. Chaos Solitons Fractals 40, 1493–1505 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Meng, X.Y., Huo, H.F., Zhang, X.B., Xiang, H.: Stability and Hopf bifurcation in a three-species system with feedback delays. Nonlinear Dyn. 64, 349–364 (2011)

    Article  MathSciNet  Google Scholar 

  23. Wang, Z.H., Hu, H.Y.: An energy analysis of the local dynamics of a delayed oscillator near a hopf bifurcation. Nonlinear Dyn. 46, 149–159 (2006)

    Google Scholar 

  24. Das, S.L., Chatterjee, A.: Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn. 30, 323–335 (2002)

    Google Scholar 

  25. Iooss, G., Joesph, D.D.: Elementary Stability and Bifurcation Theory, 2nd edn. Springer, New York (1990)

    Book  MATH  Google Scholar 

  26. Xu, J., Yu, P.: Delay-induced bifurcations in a nonautonomous system with delayed velocity feedbacks. Int. J. Bifurc Chaos 14, 2777–2798 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ramesh, M., Narayanan, S.: Controlling chaotic motions in a two-dimensional airfoil using time-delayed feedback. J. Sound Vib. 239, 1037–1049 (2001)

    Article  Google Scholar 

  28. Yuan, Y., Yu, P., Librescu, L., Marzocca, P.: Aeroelasticity of time-delayed feedback control of two-dimensional supersonic lifting surfaces. J. Guid. Control Dyn. 27, 795–803 (2004)

    Google Scholar 

  29. Librescu, L., Marzocca, P.: Aeroelasticity of 2D lifting surfaces with time-delayed feedback control. J. Fluids Struct. 20, 197–215 (2005)

    Article  Google Scholar 

  30. Zhao, Y.H.: Stability of a two-dimensional airfoil with time-delayed feedback control. J. Fluids Struct. 25, 1–25 (2009)

    Article  Google Scholar 

  31. Zhao, Y.H.: Stability of a time-delayed aeroelastic system with a control surface. Aerosp. Sci. Technol. 15, 72–77 (2011)

    Article  Google Scholar 

  32. Huang, R., Hu, H.Y., Zhao, Y.H.: Designing active flutter suppression for high-dimensional aeroelastic systems involving a control delay. J. Fluids Struct. 34, 33–50 (2012)

    Article  Google Scholar 

  33. Hu, H.Y., Wang, Z.H.: Dynamics of Controlled Mechanical Systems with Delayed Feedback. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  34. Hassard, B., Wan, Y.H.: Bifurcation formulae derived from center manifold theory. J. Math. Anal. Appl. 63, 297–312 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported in part by National Natural Science Foundation of China (Grant No. 11202052). We wish to thank two anonymous reviewers, especially the second reviewer for his (or her) careful reading and detailed comments on improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Appendices

Appendix A

The elements of \(C^{*}\) and \(K^{*}\) are given as follows,

$$\begin{aligned} c_{11}&= c_h +4\rho _\infty a_\infty b, c_{12} =4 (1-\bar{{x}}_0 )\rho _\infty a_\infty b^{2},\\ c_{13}&= \left( {2-\bar{{x}}_1 } \right) ^{2}\rho _\infty a_\infty b^{2},\\ c_{21}&= 4 (1-\bar{{x}}_0 )\rho _\infty a_\infty b^{2},\\ c_{22}&= c_\alpha +\left( \frac{16}{3}-8\bar{{x}}_0 +4\bar{{x}}_0^2 \right) \rho _\infty a_\infty b^{3},\\ c_{23}&= \frac{1}{3}(2-\bar{{x}}_1 )^{2}(4-3\bar{{x}}_0 +\bar{{x}}_1 )\rho _\infty a_\infty b^{3},\\ c_{31}&= \left( {2-\bar{{x}}_1 } \right) ^{2}\rho _\infty a_\infty b^{2},\\ c_{32}&= \frac{1}{3}(2-\bar{{x}}_1 )^{2}(4-3\bar{{x}}_0 +\bar{{x}}_1 )\rho _\infty a_\infty b^{3},\\ c_{33}&= c_\beta +\frac{2}{3}(2-\bar{{x}}_1 )^{3}\rho _\infty a_\infty b^{3},\\ k_{11}&= k_h , k_{12} =4\rho _\infty a_\infty bV,\\ k_{13}&= 2 \left( {2-\bar{{x}}_1 } \right) \rho _\infty a_\infty bV, k_{21} =0,\\ k_{22}&= k_\alpha +4(1-\bar{{x}}_0 )\rho _\infty a_\infty b^{2}V,\\ k_{23}&= (2-\bar{{x}}_1 ) (2-2\bar{{x}}_0 +\bar{{x}}_1 )\rho _\infty a_\infty b^{2}V, k_{31} =0,\\ k_{32}&= (2-\bar{{x}}_1 )^{2}\rho _\infty a_\infty b^{2}V,\\ k_{33}&= k_\beta +(2-\bar{{x}}_1 )^{2}\rho _\infty a_\infty b^{2}V \end{aligned}$$

Appendix B

$$\begin{aligned} b_1&= -2p_2 +p_1^2 , b_2 =2p_4 -2p_1 p_3 +p_2^2 -q_0^2,\\ b_3&= -2p_6+2p_1 p_5 -2p_2 p_4 +p_3^2 +2q_0 q_2 -q_1^2,\\ b_4&= 2p_2 p_6 -2p_3 p_5 +p_4^2 -2q_0 q_4 +2q_1 q_3 -q_2^2,\\ b_5&= -2p_4 p_6 +p_5^2 +2q_2 q_4 -q_3^2 , b_6 =p_6^2 -q_4^2 \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Zhang, W. & Ma, J. Stability and Hopf bifurcation of a two-dimensional supersonic airfoil with a time-delayed feedback control surface. Nonlinear Dyn 77, 819–837 (2014). https://doi.org/10.1007/s11071-014-1344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1344-y

Keywords

Navigation