Skip to main content
Log in

Lyapunov stability for continuous-time multidimensional nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the stability of continuous-time multidimensional nonlinear systems in the Roesser form. The concepts from 1D Lyapunov stability theory are first extended to 2D nonlinear systems and then to general continuous-time multidimensional nonlinear systems. To check the stability, a direct Lyapunov method is developed. While the direct Lyapunov method has been recently proposed for discrete-time 2D nonlinear systems, to the best of our knowledge what is proposed in this paper are the first results of this kind on stability of continuous-time multidimensional nonlinear systems. Analogous to 1D systems, a sufficient condition for the stability is the existence of a certain type of the Lyapunov function. A new technique for constructing Lyapunov functions for 2D nonlinear systems and general multidimensional systems is proposed. The proposed method is based on the sum of squares (SOS) decomposition, therefore, it formulates the Lyapunov function search algorithmically. In this way, polynomial nonlinearities can be handled exactly and a large class of other nonlinearities can be treated introducing some auxiliary variables and constrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shanks, J., Treitel, S., Justice, J.: Stability and synthesis of two-dimensional recursive filters. IEEE Trans. Audio Electroacoust. AU-20(2), 115–128 (1972)

    Article  Google Scholar 

  2. Huang, T.: Stability of two-dimensional recursive filters. IEEE Trans. Audio Electroacoust. AU-20(2), 158–163 (1972)

    Article  Google Scholar 

  3. Anderson, B., Jury, E.: Stability test for two-dimensional recursive filters. IEEE Trans. Audio Electroacoust. AU-21(4), 366–372 (1973)

    Article  MathSciNet  Google Scholar 

  4. Pandolfi, L.: Exponential stability of 2-D systems. Syst. Control Lett. 4, 381–385 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goodman, D.: Some stability properties of two dimensional linear shift invariant digital filters. IEEE Trans. Circuits Syst. CAS-24(4), 201–208 (1977)

    Article  Google Scholar 

  6. Roesser, R.: Discrete state-space model for linear image processing. IEEE Trans. Autom. Control AC-20(1), 1–10 (1975)

    Article  MathSciNet  Google Scholar 

  7. Fornasini, E., Marchesini, G.: State-space realization theory of two-dimensional filters. IEEE Trans. Autom. Control AC-21(4), 484–492 (1976)

    Article  MathSciNet  Google Scholar 

  8. Fornasini, E., Marchesini, G.: Doubly-indexed dynamical systems: state-space models and structural properties. Math. Syst. Theory 12, 59–72 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hinamoto, T.: The Fornasini–Marchesini model with no over flow oscillations and its application to 2D digital filter design. In: Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), Portland, USA, vol. 3, pp. 1680–1683 (1989)

    Chapter  Google Scholar 

  10. Du, C., Xie, L.: Stability analysis and stabilization of uncertain two-dimensional discrete systems: an LMI approach. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 46(11), 1371–1374 (1999)

    Article  MATH  Google Scholar 

  11. Bliman, P.-A.: Lyapunov equation for the stability of 2-D systems. Multidimens. Syst. Signal Process. 13(2), 201–222 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Galkowski, K., Lam, J., Xu, S., Lin, Z.: LMI approach to state feedback stabilization of multidimensional systems. Int. J. Control 76(14), 1428–1436 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Paszke, W., Lam, J., Galkowski, K., Xu, S., Lin, Z.: Robust stability and stabilization of 2D discrete state-delayed systems. Syst. Control Lett. 51, 277–291 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shaker, H.R., Tahavori, M.: Stability analysis for a class of discrete-time two-dimensional nonlinear systems. Multidimens. Syst. Signal Process. 21(3), 293–299 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kaczorek, T.: LMI approach to stability of 2D positive systems. Multidimens. Syst. Signal Process. 20(1), 39–54 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Avelli, D.N., Rapisarda, P., Rocha, P.: Lyapunov stability of 2D finite-dimensional behaviours. Int. J. Control 84(4), 737–745 (2011)

    Article  MATH  Google Scholar 

  17. Yeganefar, N., Yeganefar, N., Ghamgui, M., Moulay, E.: Lyapunov theory for 2D nonlinear Roesser models: application to asymptotic and exponential stability. IEEE Trans. Autom. Control 58(5), 1299–1304 (2013)

    Article  MathSciNet  Google Scholar 

  18. Lewis, F.L.: A review of 2-D implicit systems. Automatica 28(2), 345–354 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Marszalek, W.: Two-dimensional state-space discrete models for hyperbolic partial differential equations. Appl. Math. Model. 8, 11–14 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Marszalek, W.: On modelling of distributed processes with two-dimensional discrete linear equations. Rozpr. Elektrotech. 33, 627–640 (1987)

    Google Scholar 

  21. Lewis, F.L.: Walsh function analysis of 2-D generalized continuous systems. IEEE Trans. Autom. Control 35(10), 1140–1144 (1990)

    Article  MATH  Google Scholar 

  22. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  23. Leine, R.I.: The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dyn. 59(1–2), 173–182 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Aniszewska, D., Rybaczuk, M.: Lyapunov type stability and Lyapunov exponent for exemplary multiplicative dynamical systems. Nonlinear Dyn. 54(4), 345–354 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ling, Q., Jin, X.L., Wang, Y., Li, H.F., Huang, Z.L.: Lyapunov function construction for nonlinear stochastic dynamical systems. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-0757-3

    MathSciNet  Google Scholar 

  26. Kidouche, M., Habbi, H.: On Lyapunov stability of interconnected nonlinear systems: recursive integration methodology. Nonlinear Dyn. 60(1–2), 183–191 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Papachristodoulou, A., Prajna, S.: A tutorial on sum of squares techniques for systems analysis. In: Proceedings of the American Control Conference, vol. 4, pp. 2686–2700 (2005)

    Google Scholar 

  29. Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: Sum of squares optimization toolbox for MATLAB—user’s guide (2004). Available at: http://www.cds.caltech.edu/sostools/sostools.pdf

  30. Papachristodoulou, A., Prajna, S.: Analysis of non-polynomial systems using the sum of squares decomposition. In: Henrion, D., Garulli, A. (eds.) Positive Polynomials in Control, pp. 23–44. Springer, Berlin (2005)

    Google Scholar 

  31. Papachristodoulou, A., Prajna, S.: On the construction of Lyapunov functions using the sum of squares decomposition. In: Proceedings of 41st IEEE Conference on Decision and Control, vol. 3, pp. 3482–3487 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Shaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaker, H.R., Shaker, F. Lyapunov stability for continuous-time multidimensional nonlinear systems. Nonlinear Dyn 75, 717–724 (2014). https://doi.org/10.1007/s11071-013-1098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1098-y

Keywords

Navigation