Skip to main content
Log in

Dynamic analysis of earthquake phenomena by means of pseudo phase plane

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper analyses earthquake data in the perspective of dynamical systems and its Pseudo Phase Plane representation. The seismic data is collected from the Bulletin of the International Seismological Centre. The geological events are characterised by their magnitude and geographical location and described by means of time series of sequences of Dirac impulses. Fifty groups of data series are considered, according to the Flinn-Engdahl seismic regions of Earth. For each region, Pearson’s correlation coefficient is used to find the optimal time delay for reconstructing the Pseudo Phase Plane. The Pseudo Phase Plane plots are then analysed and characterised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ghobarah, A., Saatcioglu, M., Nistor, I.: The impact of the 26 December 2004 earthquake and tsunami on structures and infrastructure. Eng. Struct. 28, 312–326 (2006)

    Article  Google Scholar 

  2. Marano, K., Wald, D., Allen, T.: Global earthquake casualties due to secondary effects: a quantitative analysis for improving rapid loss analyses. Nat. Hazards 52, 319–328 (2010)

    Article  Google Scholar 

  3. Lee, S., Davidson, R., Ohnishi, N., Scawthorn, C.: Fire following earthquake—reviewing the state-of-the-art modelling. Earthq. Spectra 24, 933–967 (2008)

    Article  Google Scholar 

  4. Bird, J.F., Bommer, J.J.: Earthquake losses due to ground failure. Eng. Geol. 75, 147–179 (2004)

    Article  Google Scholar 

  5. Anderson, D.L.: How many plates? Geology 30, 411–414 (2002)

    Article  Google Scholar 

  6. Sornette, D., Pisarenko, V.: Fractal plate tectonics. Geophys. Res. Lett. (2003). doi:10.1029/2002GL015043

    Google Scholar 

  7. Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L.C., Alisic, L., Ghattas, O.: The dynamics of plate tectonics and mantle flow: from local to global scales. Science 329, 1033–1038 (2010)

    Article  Google Scholar 

  8. Bellahsen, N., Faccenna, C., Funiciello, F.: Dynamics of subduction and plate motion in laboratory experiments: insights into the “plate tectonics” behavior of the Earth. J. Geophys. Res. (2005). doi:10.1029/2004JB002999

    Google Scholar 

  9. Bhattacharya, P., Chakrabarti, B.K., Kamal: A fractal model of earthquake occurrence: theory, simulations and comparisons with the aftershock data. J. Phys. Conf. Ser. 319, 012004 (2011)

    Article  Google Scholar 

  10. Carlson, J.M., Langer, J.S., Shaw, B.E.: Dynamics of earthquake faults. Rev. Mod. Phys. 66, 657–670 (1994)

    Article  MATH  Google Scholar 

  11. De Rubeis, V., Hallgass, R., Loreto, V., Paladin, G., Pietronero, L., Tosi, P.: Self-affine asperity model for earthquakes. Phys. Rev. Lett. 76, 2599–2602 (1996)

    Article  Google Scholar 

  12. Lopes, A.M., Tenreiro Machado, J.A., Pinto, C.M.A., Galhano, A.M.S.F.: Fractional dynamics and MDS visualization of earthquake phenomena. Comput. Math. Appl. (2013). doi:10.1016/j.camwa.2013.02.003

    MathSciNet  Google Scholar 

  13. Sobolev, G.A.: Seismicity dynamics and earthquake predictability. Nat. Hazards Earth Syst. Sci. 11, 445–458 (2011)

    Article  Google Scholar 

  14. Bak, P., Tang, S.: Earthquakes as self-organized critical phenomenon. J. Geophys. Res., Solid Earth 94, 15635–15637 (1989)

    Article  Google Scholar 

  15. Chelidze, T., Kolesnikov, Y., Matcharashvili, T.: Seismological criticality concept and percolation model of fracture. Geophys. J. Int. 164, 125–136 (2006)

    Article  Google Scholar 

  16. Hainzl, S., Zoller, G., Kurths, J., Zschau, J.: Seismic quiescence as an indicator for large earthquakes in a system of self-organized criticality. Geophys. Res. Lett. 27, 597–600 (2000)

    Article  Google Scholar 

  17. Harris, R.A., Day, S.M.: Dynamics of fault interaction: parallel strike-slip faults. J. Geophys. Res., Solid Earth 98, 4461–4472 (1993)

    Article  Google Scholar 

  18. Stakhovsky, I.R.: Self-similar seismogenic structure of the crust: a review of the problem and a mathematical model. Izvest. Phys. Solid Earth 43, 1012–1023 (2007)

    Article  Google Scholar 

  19. Sobolev, G., Spetzler, H., Koltsov, A., Chelidze, T.: An experimental study of triggered stick-slip. Pure Appl. Geophys. 140, 79–94 (1993)

    Article  Google Scholar 

  20. Scholz, C.H.: Large earthquake triggering, clustering, and the synchronization of faults. Bull. Seismol. Soc. Am. 100, 901–909 (2010)

    Article  Google Scholar 

  21. Hallgass, R., Loreto, V., Mazzella, O., Paladin, G., Pietronero, L.: Earthquake statistics and fractal faults. Phys. Rev. E 56, 1346–1356 (1997)

    Article  Google Scholar 

  22. Sarlis, N.V., Christopoulos, S.-R.G.: Natural time analysis of the centennial earthquake catalog. Chaos 22, 023123 (2012)

    Article  Google Scholar 

  23. Turcotte, D.L., Malamud, B.D.: Earthquakes as a complex system. Int. Geophys. Ser. 81, 209–227 (2002)

    Article  Google Scholar 

  24. Kanamori, H., Brodsky, E.: The physics of earthquakes. Rep. Prog. Phys. 67, 1429–1496 (2004)

    Article  MathSciNet  Google Scholar 

  25. Stein, S., Liu, M., Calais, E., Li, Q.: Mid-continent earthquakes as a complex system. Seismol. Res. Lett. 80, 551–553 (2009)

    Article  Google Scholar 

  26. Lennartz, S., Livina, V.N., Bunde, A., Havlin, S.: Long-term memory in earthquakes and the distribution of interoccurrence times. Europhys. Lett. 81, 69001 (2008)

    Article  Google Scholar 

  27. El-Misiery, A.E.M., Ahmed, E.: On a fractional model for earthquakes. Appl. Math. Comput. 178, 207–211 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pinto, C.M.A., Lopes, A.M., Tenreiro Machado, J.A.: A review of power laws in real life phenomena. Commun. Nonlinear Sci. Numer. Simul. 17, 3558–3578 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sornette, D., Knopoff, L., Kagan, Y., Vanneste, C.: Rank-ordering statistics of extreme events: application to the distribution of large earthquakes. J. Geophys. Res. 101, 13883–13893 (1996)

    Article  Google Scholar 

  30. Gutenberg, B., Richter, C.F.: Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34, 185–188 (1944)

    Google Scholar 

  31. Christensen, K., Olami, Z.: Variation of the Gutenberg-Richter b values and nontrivial temporal correlations in a spring-block model for earthquakes. J. Geophys. Res. 97, 8729–8735 (1992)

    Article  Google Scholar 

  32. Omori, F.: On the aftershocks of earthquakes. J. Coll. Sci. 7, 111–200 (1894)

    Google Scholar 

  33. Utsu, T., Ogata, Y., Matsuura, R.S.: The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43, 1–33 (1995)

    Article  Google Scholar 

  34. Reasenberg, P.A., Jones, L.M.: Earthquake hazard after a mainshock in California. Science 243, 1173–1176 (1989)

    Article  Google Scholar 

  35. Lindman, M., Lund, B., Roberts, R., Jonsdottir, K.: Physics of the Omori law: inferences from interevent time distributions and pore pressure diffusion modelling. Tectonophysics 424, 209–222 (2006)

    Article  Google Scholar 

  36. Chakrabarti, B.K., Stinchcombe, R.B.: Stick-slip statistics for two fractal surfaces: a model for earthquakes. Physica A 270, 27–34 (1999)

    Article  Google Scholar 

  37. Yang, D., Yang, P., Zhang, C.: Chaotic characteristic analysis of strong earthquake ground motions. Int. J. Bifurc. Chaos 22, 1250045 (2012)

    Article  Google Scholar 

  38. Okubo, P.G., Aki, K.: Fractal geometry in the San Andreas fault system. J. Geophys. Res. 92, 345–355 (1987)

    Article  Google Scholar 

  39. Sornette, A., Sornette, D.: Self-organized criticality and earthquakes. Europhys. Lett. 9, 197–202 (1989)

    Article  Google Scholar 

  40. Shahin, A.M., Ahmed, E., Elgazzar, A.S., Omar, Y.A.: On fractals and fractional calculus motivated by complex systems. arXiv:0901.3618v1 [nlin.AO]

  41. Rocco, A., West, B.J.: Fractional calculus and the evolution of fractal phenomena. Physica A 265, 535–546 (1999)

    Article  Google Scholar 

  42. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science, London (1993)

    MATH  Google Scholar 

  43. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  44. Kilbas, A., Srivastava, H.M., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  45. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific Publishing, Singapore (2012)

    Google Scholar 

  46. Lima, M.F.M., Tenreiro Machado, J.A.: Representation of robotic fractional dynamics in the pseudo phase plane. Acta Mech. Sin. 27, 28–35 (2011)

    Article  MATH  Google Scholar 

  47. Tenreiro Machado, J.A.: Accessing complexity from genome information. Commun. Nonlinear Sci. Numer. Simul. 17, 2237–2243 (2012)

    Article  Google Scholar 

  48. Lima, M.F.M., Tenreiro Machado, J.A., Costa, A.C.: A multidimensional scaling analysis of musical sounds based on pseudo phase plane. Abstr. Appl. Anal. (2012). doi:10.1155/2012/436108

    MathSciNet  Google Scholar 

  49. Duarte, F.B., Tenreiro Machado, J.A., Duarte, G.M.: Dynamics of the Dow Jones and the Nasdaq stock indexes. Nonlinear Dyn. 61, 691–705 (2010)

    Article  MATH  Google Scholar 

  50. International Seismological Centre On-line Bulletin, Internatl Seis Cent, Thatcham, United Kingdom (2010). http://www.isc.ac.uk. Accessed 12 June 2013

  51. Young, J.B., Presgrave, B.W., Aichele, H., Wiens, D.A., Flinn, E.A.: The Flinn-Engdahl regionalisation scheme: the 1995 revision. Phys. Earth Planet. Inter. 96, 223–297 (1996)

    Article  Google Scholar 

  52. Flinn, E.A., Engdahl, E.R., Hill, A.R.: Seismic and geographical regionalization. Bull. Seismol. Soc. Am. 64, 771–993 (1974)

    Google Scholar 

  53. Flinn, E.A., Engdahl, E.R.: A proposed basis for geographical and seismic regionalization. Rev. Geophys. 3, 123–149 (1965)

    Article  Google Scholar 

  54. http://earthquake.usgs.gov/ Accessed 14 April 2013

  55. Tenreiro Machado, J.A., Duarte, G.M., Duarte, F.B.: Identifying economic periods and crisis using the multidimensional scaling. Nonlinear Dyn. 63, 611–622 (2011)

    Article  Google Scholar 

  56. Takens, F.: Detecting strange attractors in turbulence. Dyn. Syst. Turbul. 898, 366–381 (1981)

    MathSciNet  Google Scholar 

  57. International Seismological Centre, On-line Bulletin, http://www.isc.ac.uk, Internatl. Seis. Cent., Thatcham, United Kingdom, 2011

  58. Kostić, S., Franović, I., Todorović, K., Vasović, N.: Friction memory effect in complex dynamics of earthquake model. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-0914-8

    Google Scholar 

  59. Ivo Alves, E.: Earthquake forecasting using neural networks: results and future work. Nonlinear Dyn. 44, 341–349 (2006)

    Article  MATH  Google Scholar 

  60. Yaşar, E.: Variational principles and conservation laws to the Burridge–Knopoff equation. Nonlinear Dyn. 54, 307–312 (2008)

    Article  MATH  Google Scholar 

  61. Gao, J., Hu, J., Tung, W.: Entropy measures for biological signal analyses. Nonlinear Dyn. 68, 431–444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António M. Lopes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, A.M., Tenreiro Machado, J.A. Dynamic analysis of earthquake phenomena by means of pseudo phase plane. Nonlinear Dyn 74, 1191–1202 (2013). https://doi.org/10.1007/s11071-013-1034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1034-1

Keywords

Navigation