Skip to main content
Log in

Robotic locomotion of three generations of a family tree of dynamical systems. Part II: Impulsive control of gait patterns

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The objective of this paper is to develop a simple active control scheme for the systems presented in a companion paper (Part I). These are the single mass, the baton, and the three-mass (one revolute joint, two links) systems. The three systems can generate a rich set of passive gaits such as hopping, tapping, and walking each including various gait modes. Yet, we have shown that none of these gait patterns are asymptotically stable except the passive walking. Our control objective is to generate asymptotically stable gait patterns by emulating contact based conditions of passive gaits via impulsive control for the three generations of the family. We consider an impulsive actuator located at all the point masses to actively emulate the contact based rules of passive gait patterns that we introduced in Part I. Consequently, a nonlinear impulsive controller is designed for the hybrid dynamics of our systems that can actively generate the passive gaits on arbitrary ground slope angles. Furthermore, the role of continuous control in the closed loop dynamics of the three-mass system is investigated. We show a combination of continuous and impulsive control can maintain a nonscuffing bipedal walking on arbitrary ground slope angles. Our results show that the controlled systems successfully generate active gaits without significant degradation in the energetic efficiencies of the equivalent passive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahmadi, M.: Stable control of a one-legged robot exploiting passive dynamics. Ph.D. Thesis, Department of Mechanical Engineering, McGill University, Montreal, QC, Canada (1998)

  2. Silva, M.F., Machado, J.A.T., Lopes, A.M.: Fractional order control of a hexapod robot. Nonlinear Dyn. 38, 417–433 (2004)

    Article  MATH  Google Scholar 

  3. Asano, F., Luo, Z.W., Yamakita, M.: Biped gait generation and control based on unified property of passive dynamic walking. IEEE Trans. Robot. 21, 754–762 (2005)

    Article  Google Scholar 

  4. Asano, F., Luo, Z.W.: Efficiency and Symmetry of Ballistic Gait. In: IEEE Int. Conference on Intelligent Robots and Systems, Nice, France, September 22–26 (2008)

    Google Scholar 

  5. Bainov, D.D., Simeonov, P.S.: Systems with Impulse Effects: Stability, Theory and Applications. Academic Press, New York (1989)

    MATH  Google Scholar 

  6. Kamali Eigoli, A., Vossoughi, G.R.: Dynamic analysis of microrobots with Coulomb friction using harmonic balance method. Nonlinear Dyn. 67, 1357–1371 (2012)

    Article  Google Scholar 

  7. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control. Springer, Berlin (1999). ISBN 1852331437

    Book  MATH  Google Scholar 

  8. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Springer, Berlin (2005). ISBN 0-387-22195-6

    MATH  Google Scholar 

  9. Byl, B.: Metastable Legged-Robot Locomotion. Massachusetts Institute of Technology (2008)

  10. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The simplest walking model: stability, complexity, and scaling. J. Biomech. Eng. 120, 281–288 (1998)

    Article  Google Scholar 

  11. Harata, Y., Asano, F., Taji, K., Uno, Y.: Efficient parametric excitation walking with delayed feedback control. Nonlinear Dyn. 67, 1327–1335 (2012)

    Article  MathSciNet  Google Scholar 

  12. Grizzle, J.W., Choi, J.: Feedback control of an underactuated planar bipedal robot with impulsive foot action. Robotica 23, 567–580 (2005)

    Article  Google Scholar 

  13. Grizzle, J.W., Morris, B.: Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots. IEEE Trans. Autom. Control (2007). doi:10.1109/TAC.2009.2024563

    Google Scholar 

  14. Haddad, W.M., Chellabonia, V.S., Nersesov, S.G.: Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  15. Haddad, W.M., Hui, Q.: Energy dissipating hybrid control for impulsive dynamical systems. Nonlinear Anal. 693, 3232–3248 (2008)

    Article  MathSciNet  Google Scholar 

  16. Hespanha, J.P., Liberzon, D., Teel, A.R.: Lyapunov conditions for input-to-state stability of impulsive systems. Automatica 44, 2735–2744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yildirim, S.: A proposed hybrid neural network for position control of a walking robot. Nonlinear Dyn. 52, 207–215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hurmuzlu, Y., Moskowitz, G.D.: Bipedal locomotion stabilized by impact and switching. I. Two and three dimensional, three element models. II. Structural stability analysis of a four-element model. Int. J. Dyn. Stab. Syst. 2, 73–96, 97–112 (1987)

    Article  Google Scholar 

  19. Hurmuzlu, Y.: Dynamics of bipedal gait. Part II: Stability analysis of a planar five-link biped. J. Appl. Mech. 60, 337–343 (1993)

    Article  Google Scholar 

  20. Isidori, A.: Nonlinear Control Systems, 2nd edn. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  21. Lewis, A.D., Murray, R.M.: Equilibrium controllability for a class of mechanical systems. In: Proc. IEEE Control and Decision Conference. (1995). To appear in SIAM J. Control Optim.

  22. Lynch, K.M., Mason, M.T.: Dynamic nonprehensile manipulation: controllability, planning, and experiments. Int. J. Robot. Res. 18, 64–92 (1999)

    Google Scholar 

  23. Miller, B.M., Rubinovich, E.Y.: Impulsive Control in continuous and Discrete Continuous Systems. Princeton University Press, Princeton (2003)

    Book  MATH  Google Scholar 

  24. Orlov, Y., Santiesteban, R., Aguilar, L.T.: Impulsive control of a mechanical oscillator with friction. In: Proceedings of the 2009 Conference on American Control Conference, St. Louis, Missouri, USA, pp. 3494–3499 (2009)

    Chapter  Google Scholar 

  25. Passino, K.M., Michel, A.N., Antsaklis, P.J.: Lyapunov stability of a class of discrete event systems. IEEE Trans. Autom. Control 39, 269–279 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Raibert, M.H.: Legged Robots That Balance. MIT Press, Cambridge (1986)

    Google Scholar 

  27. Rubensson, M., Lennartson, B.: Stability of limit cycles in hybrid systems using discrete-time Lyapunov techniques. In: Proceedings of the 39th IEEE Conference on Decision and Control (2000)

    Google Scholar 

  28. Ruina, A., Bertram, J.E.A., Srinivasan, M.A.: Collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. 237, 170–192 (2005)

    Article  MathSciNet  Google Scholar 

  29. Spong, M.W., Bhatia, B.: Further results on control of the compass gait biped. In: Proc. IROS 2003, Las Vegas, Nevada, October 27–30, 2003, pp. 1933–1938 (2003)

    Google Scholar 

  30. Spong, M.W., Bullo, F.: Controlled symmetries and passive walking. IEEE Trans. Autom. Control 50, 1025–1031 (2005)

    Article  MathSciNet  Google Scholar 

  31. Sussmann, H.J., Jurdjevic, V.: Controllability of nonlinear systems. J. Differ. Equ. 12, 95–116 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tao, Y.: Impulsive Control Theory. Lecture Notes in Control and Information Sciences, vol. 272. Springer, Berlin (2001)

    MATH  Google Scholar 

  33. Westervelt, E.R., Morris, B., Farrell, K.D.: Analysis results and tools for the control of planar bipedal gaits using hybrid zero dynamics. Auton. Robots 23, 131–145 (2007)

    Article  Google Scholar 

  34. Marghitu, D.B., Swaim, S.F., Rumph, P.F., Cojocaru, D., Gillette, R.L., Scardino, M.S.: Dynamics analysis of ground contact pressure of English pointer dogs. Nonlinear Dyn. 33, 253–265 (2003)

    Article  MATH  Google Scholar 

  35. Wisse, M., Hobbelen, D.G.E.: Humanoid Robots, Human-Like Machines. In-Tech, Winchester (2007). ISBN 978-3-902613-07-3

    Google Scholar 

  36. Wisse, M., Hobbelen, D.G.E., Schwab, A.L.: Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism. IEEE Trans. Robot. 23, 112–123 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yildirim Hurmuzlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavakoli, A., Hurmuzlu, Y. Robotic locomotion of three generations of a family tree of dynamical systems. Part II: Impulsive control of gait patterns. Nonlinear Dyn 73, 1991–2012 (2013). https://doi.org/10.1007/s11071-013-0917-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0917-5

Keywords

Navigation