Skip to main content
Log in

Analysis results and tools for the control of planar bipedal gaits using hybrid zero dynamics

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

New analysis and tools are presented that extend the hybrid zero dynamics (HZD) framework for the control of planar bipedal walkers. Results include (i) analysis of walking on a slope, (ii) analysis of dynamic (decoupling matrix) singularities, and (iii) an alternative method for choosing virtual constraints. A key application of the new tools is the design of controllers that render a passive bipedal gait robust to disturbances without the use of full actuation—while still requiring zero control effort at steady-state. The new tools can also be used to design controllers for gaits having an arbitrary steady-state torque profile. Five examples are given that illustrate these and other results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Augmentation function parameter vector

α :

Ground slope

[α]:

Functional dependence on α; emphasized with square brackets

D(q):

Inertial matrix of the full dynamics

\(F{[}\alpha{]}(q,\dot{q})\) :

Coriolis, centrifugal, gravitational terms of the full dynamics

\(h_{d}(s),\ \bar{h}_{d}(\theta)\) :

Desired joint angles of the actuated joints

I(θ,y):

Closed-loop virtual inertia

I y (θ,y):

Virtual inertia of transverse dynamics

I RB (θ,y):

Rigid body inertia

I AB (θ,y):

Inertia associated with the articulated body angular momentum

K p , K d :

PD controller gains

l, l c , m, J, g 0 :

Parameters of the two-link model

L g L f h(q):

Decoupling matrix from input u to output y

\(L_{\bar{g}}L_{\bar{f}}h(q)\) :

Decoupling matrix from input v to output y

q a :

Vector of actuated coordinates

q u :

Unactuated coordinate (scalar)

s(θ):

Normalization function for θ

S(q):

Function used to determine invertibility of decoupling matrix

\(\mathcal{S}\) :

Switching surface; Poincaré section

Σ :

Full dynamics walking model

Σ zero :

HZD model of walking

σ :

Angular momentum about pivot foot

θ(q):

Scalar function that is a surrogate for time; monotonic over a step

θ +,θ :

Values of θ at the start and end of a gait

θ s :

Value of θ corresponding to a singularity

T s :

Time from step start to singularity

u :

Control input

\(x=(q,\dot{q})\) :

State vector of the full dynamics

y=h(q):

Output defining virtual constraints

z=(θ,σ):

State vector of the restricted (zero) dynamics

\(\mathcal{Z}\) :

Zero dynamics manifold; constraint surface

References

  • Asano, F., Yamakita, M., Kamamichi, N., & Luo, Z.-W. (2004). A novel gait generation for biped walking robots based on mechanical energy constraint. IEEE Transactions on Robotics and Automation, 20(3), 565–573.

    Article  Google Scholar 

  • Chevallereau, C. (2003). Time-scaling control for an underactuated biped robot. IEEE Transactions on Robotics and Automation, 19(2), 362–368.

    Article  Google Scholar 

  • Chevallereau, C., & Aoustin, Y. (2001). Optimal reference trajectories for walking and running of a biped robot. Robotica, 19(5), 557–569.

    Article  Google Scholar 

  • Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E. R., Canudas, C., & Grizzle, J. W. (2003). RABBIT: a testbed for advanced control theory. IEEE Control Systems Magazine, 23(5), 57–79.

    Article  Google Scholar 

  • Choi, J. H., & Grizzle, J. W. (2005). Planar bipedal walking with foot rotation. In Proceedings of the 2005 American control conference (pp. 4909–4916), Portland, OR.

  • Collins, S. H., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307, 1082–1085.

    Article  Google Scholar 

  • De Boor, C. (1978). A practical guide to splines. Berlin: Springer.

    MATH  Google Scholar 

  • Featherstone, R. (1983). The calculation of robot dynamics using articulated-body inertias. International Journal of Robotics Research, 2(1), 13–30.

    Article  Google Scholar 

  • Garcia, M. (1999). Stability, scaling, and chaos in passive-dynamic gait models. PhD thesis, Cornell University.

  • Garcia, M., Chatterjee, A., & Ruina, A. (2000). Efficiency, speed, and scaling of two-dimensional passive-dynamic walking. Dynamics and Stability of Systems, 15(2), 75–99.

    Article  MATH  Google Scholar 

  • Goswami, A., Espiau, B., & Keramane, A. (1997). Limit cycles in a passive compass gait biped and passivity-mimicking control laws. Autonomous Robots, 4(3), 273–286.

    Article  Google Scholar 

  • Grizzle, J. W., Abba, G., & Plestan, F. (2001). Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic Control, 46, 51–64.

    Article  MATH  Google Scholar 

  • Hürmüzlü, Y., & Marghitu, D. B. (1994). Rigid body collisions of planar kinematic chains with multiple contact points. International Journal of Robotics Research, 13(1), 82–92.

    Article  Google Scholar 

  • Isidori, A. (1995). Nonlinear control systems (3rd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics Research, 9(2), 62–82.

    Article  Google Scholar 

  • Morris, B., & Grizzle, J. W. (2005). A restricted Poincaré map for determining exponentially stable periodic orbits in systems with impulse effects: Application to bipedal robots. In Proceedings of the 2005 IEEE international conference on decision and control / European control conference (pp. 4199–4206), Seville, Spain.

  • Papadopoulos, E., & Dubowsky, S. (1993). Dynamic singularities in free-floating space manipulators. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 115(1), 44–52.

    Google Scholar 

  • Plestan, F., Grizzle, J. W., Westervelt, E. R., & Abba, G. (2003). Stable walking of a 7-DOF biped robot. IEEE Transactions on Robotics and Automation, 19(4), 653–668.

    Article  Google Scholar 

  • Spong, M. W. (1995). The swing up control problem for the Acrobot. IEEE Control Systems Magazine, 15(1), 49–55.

    Article  Google Scholar 

  • Spong, M. W., & Bullo, F. (2005). Controlled symmetries and passive walking. IEEE Transactions on Automatic Control, 50(7), 1025–1031.

    Article  Google Scholar 

  • Suzuki, S., Furuta, K., Pan, Y., & Hatakeyama, S. (2001). Biped walking robot control with passive walker model by new vsc. In Proceedings of the 2001 American control conference (Vol. 1, pp. 107–112), Arlington, VA.

  • Westervelt, E. R. (2007). Eric Westervelt’s publications. http://www.mecheng.osu.edu/~westerve/publications/.

  • Westervelt, E. R., Buche, G., & Grizzle, J. W. (2004). Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. International Journal of Robotics Research, 23(6), 559–582.

    Article  Google Scholar 

  • Westervelt, E. R., Grizzle, J. W., & Koditschek, D. E. (2003). Hybrid zero dynamics of planar biped walkers. IEEE Transactions on Automatic Control, 48(1), 42–56.

    Article  Google Scholar 

  • Westervelt, E. R., Grizzle, J. W., Chevallereau, C., Choi, J.-H., & Morris, B. (2007). Feedback control of dynamic bipedal robot locomotion. London: Taylor & Francis/CRC.

    Google Scholar 

  • Xi, F., & Fenton, R. (1994). On the inverse kinematics of space manipulators for avoiding dynamic singularities. In Proceedings of the 1994 IEEE international conference on robotics and automation (Vol. 4, pp. 3460–3465), San Diego, CA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Westervelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westervelt, E.R., Morris, B. & Farrell, K.D. Analysis results and tools for the control of planar bipedal gaits using hybrid zero dynamics. Auton Robot 23, 131–145 (2007). https://doi.org/10.1007/s10514-007-9036-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9036-9

Keywords

Navigation