Skip to main content

Advertisement

Log in

Role of initial conditions in the dynamics of a double pendulum at low energies

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider the low energy dynamics of the double pendulum. Low energy implies energies close to the critical value required to make the outer pendulum rotate. All the known interesting results for the double pendulum are at high energies, that is, energies higher than that required to make both pendulums rotate. We show that interesting behavior can occur at low energies as well by which we mean energies just sufficient to make the outer pendulum rotate. A harmonic balance and the Lindstedt–Poincare analysis at the low energies establish that at small, but finite amplitude; the two normal modes behave differently. While the frequency of the “in-phase” mode is almost unchanged with increasing amplitude, the frequency of the “out-of-phase” mode drops sharply. Numerical analysis verifies this analytic result and since the perturbation theory indicates a mode softening for the out-of-phase mode at a critical amplitude, we did a careful numerical analysis of the low energy region just above the threshold for onset of rotation for the outlying pendulum. We find chaotic behavior, but the chaos is a strong function of the initial condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Shinbrot, T., Grebogi, C., Wisdom, J., Yorke, J.A.: Chaos in a double pendulum. Am. J. Phys. 60, 491–499 (1992)

    Article  Google Scholar 

  2. Bender, C.M., Feinberg, J., Hook, D.W., Weir, D.J.: Chaotic systems in a complex phase space. Pramana—J. Phys. 73, 453–470 (2009)

    Article  Google Scholar 

  3. Sartorelli, J.C., Lacarbonara, J.: Parametric resonances in a base-excited double pendulum. Nonlinear Dyn. 69, 1679–1692 (2012)

    Article  MathSciNet  Google Scholar 

  4. Liang, Y., Feeny, B.F.: Parametric identification of a chaotic base-excited double pendulum experiment. Nonlinear Dyn. 52, 181–197 (2008)

    Article  MATH  Google Scholar 

  5. Stachowiak, T., Okada, T.: A numerical analysis of chaos in the double pendulum. Chaos Solitons Fractals 29, 417–422 (2006)

    Article  MATH  Google Scholar 

  6. Cross, R.: A double pendulum swing experiment: in search of a better bat. Am. J. Phys. 73, 330–339 (2005)

    Article  Google Scholar 

  7. Cross, R.: A double pendulum model of tennis strokes. Am. J. Phys. 79, 470–476 (2011)

    Article  Google Scholar 

  8. Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers. Oxford University Press, Oxford (1977)

    Google Scholar 

  9. Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon Press, Oxford (1960)

    MATH  Google Scholar 

  10. Rand, R.: Lecture notes on nonlinear vibration, version 53, pp. 72–76. (2012). eCommons@Cornell. http://hdl.handle.net/1813/28989

  11. Chen, Y.M., Liu, J.K.: A new method based on the harmonic balance method for nonlinear oscillators. Phys. Lett. A 368, 371–378 (2007)

    Article  MATH  Google Scholar 

  12. Chen, Y.M., Liu, J.K.: Elliptic harmonic balance method for two degree-of-freedom self-excited oscillators. Commun. Nonlinear Sci. Numer. Simul. 14, 916–922 (2009)

    Article  Google Scholar 

  13. Szemplinska-Stupnicka, W.: The generalized harmonic balance method for determining the combination resonance in the parametric dynamic systems. J. Sound Vib. 58, 347–361 (1978)

    Article  MATH  Google Scholar 

  14. Hatwal, H., Mallik, A.K., Ghosh, A.: Forced nonlinear oscillations of an autoparametric system—part 1: periodic responses. J. Appl. Mech. 50, 657–662 (1983)

    Article  MATH  Google Scholar 

  15. Hatwal, H., Mallik, A.K., Ghosh, A.: Forced nonlinear oscillations of an autoparametric system—part 2: chaotic responses. J. Appl. Mech. 50, 663–668 (1983)

    Article  MATH  Google Scholar 

  16. Vakakis, A.F., Rand, R.: Normal modes and global dynamics of a two-degree-of-freedom non-linear system—I. Low energies. Int. J. Non-Linear Mech. 27, 861–874 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vakakis, A.F., Rand, R.: Normal modes and global dynamics of a two-degree-of-freedom non-linear system—II. High energies. Int. J. Non-Linear Mech. 27, 875–888 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, S.H., Cheung, Y.K.: A modified Lindstedt–Poincare method for a strongly non-linear two degree-of-freedom system. J. Sound Vib. 193, 751–762 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Antia, H.M.: Numerical Methods for Scientists and Engineers. Tata McGraw-Hill, New Delhi (1995)

    Google Scholar 

Download references

Acknowledgements

Jyotirmoy Roy was supported by the National Initiative on Undergraduate Science (NIUS) undertaken by the Homi Bhaba Centre for Science Education—Tata Institute of Fundamental Research (HBCSE-TIFR), Mumbai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmoy Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, J., Mallik, A.K. & Bhattacharjee, J.K. Role of initial conditions in the dynamics of a double pendulum at low energies. Nonlinear Dyn 73, 993–1004 (2013). https://doi.org/10.1007/s11071-013-0848-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0848-1

Keywords

Navigation